Elementary Mathematical Logic

<u>**D.**1</u>. (*Proposition*)

A proposition is a statement, which is either true (T) or false (F).

<u>Ex. 1.</u>

Say whether each of the following sentences is a proposition. In case of a proposition, determine its truth value:

- 1. The capital of Germany is Berlin.
- 2. How old is your father?
- 3. $5 \cdot 2 = 20$.
- 4. Switch the radio on.
- 5. Every even number greater than 2 is the sum of two primes.
- 6. $x > 13, x \in R$

Solution:

- 1. A proposition with the truth value T.
- 2. No proposition.
- 3. A proposition with the truth value F.
- 4. No proposition.
- 5. A proposition whose truth value is not known, the so-called Goldbach's conjecture.
- 6. No proposition. Substituting a real number for *x* will turn the statement into a proposition having a truth value.

(Such a proposition is sometimes called a *proposition form*.)

<u>**R. 1.</u> (***Two Principles***)**</u>

- 1. A proposition is <u>either</u> true <u>or</u> false.
- 2. A Proposition cannot be at the same time true and false.

(The two principles will later be formulated as assertions and proved.)

<u>**D.**</u> 2. (Logical Quantifiers)

We have the following quantifiers:

- 1. The *universal quantifier*: \forall means "for all", "for every".
- 2. The *existence quantifier*: \exists means "there exists at least one".
- 3. The *extended existence qualifier*: \exists ! "there exists exactly one".

<u>R. 2.</u> (Logical Connectors)

We have the following *connectors*:

- 1. Negation
- 2. Disjunction
- 3. Conjunction
- 4. Implication
- 5. Equivalence

D. 3. (Negation)

The *negation* of p is the proposition $\neg p$ which is true if, and only if, p is false:

р	$\neg p$
Т	F
F	Т

<u>Ex. 2.</u>

p: "Everybody knows Einstein."

 $\neg p$: "At least one person does not know Einstein."

<u>**D.**</u> 4. (Disjunction)

The proposition p or q is true if, and only if, <u>at least</u> one of the two propositions is true. The *disjunction* will be denoted by \lor .

р	q	$p \lor q$
Т	Т	Т
Т	F	Т
F	Т	Т
F	F	F

Ex. 3. Denote by

> p: "20:4 = 5"q: "2 > 10".

The (compound) proposition "20: 4 = 5 or 2 > 10" is true.

<u>**D.**</u> 5. (Conjunction)

The proposition *p* and *q* is true if, and only if, <u>both</u> propositions are true. The *conjunction* will be denoted by \wedge .

р	q	$p \wedge q$
Т	Т	Т
Т	F	F
F	Т	F
F	F	F

Ex. 4. Denote by

> p: "20:4=5"q: "2>10".

The (compound) proposition "20: 4 = 5 and 2 > 10" is false.

<u>**D.**</u> 6. (Implication)

The proposition *p* implies *q* is false if, and only if, *p* is true and *q* is false. The implication will be denoted by \Rightarrow .

р	q	$p \Rightarrow q$
Т	Т	Т
Т	F	F
F	Т	Т
F	F	Т

Ex. 5. Denote by

- p: "20:4 = 5"q: "2 > 10".
- 1. The (compound) proposition "If 20: 4 = 5 then 2 > 10" is false.
- 2. The (compound) proposition "If 2 > 10 then 20: 4 = 5" is true.

R. 2. (Sufficient Condition, Necessary Condition)

In the implication

 $p \Rightarrow q$

p is the *sufficient condition* for q to be fulfilled; q is the *necessary condition* for p to be fulfilled.

<u>D.</u>*7***.** (*Equivalence*)

The *equivalence* $p \Leftrightarrow q$ is true whenever p and q have the same logical value.

р	q	$p \Leftrightarrow q$
Т	Т	Т
Т	F	F
F	Т	F
F	F	Т

Ex. 6. Denote by

> p: "20:4 = 6"q: "2 > 10".

The compound proposition "20: 4 = 6 if and only if 2 > 10" is true.

<u>R. 3.</u> (Sufficient and Necessary Condition)

In the equivalence

 $p \Leftrightarrow q$

p is both *sufficient and necessary condition* for q to be fulfilled; q is both *necessary and sufficient condition* for p to be fulfilled.

<u>**R. 4.</u> (Or Exclusion)**</u>

In electronics and some programming languages, there is also an *or exclusion* (the so called *xor connector* defined as follows:

Let p and q be two propositions. The connection p xor q is true if, and only if, p and q have different logical values.

p	q	p xor q
Т	Т	F
Т	F	Т
F	Т	Т
F	F	F

<u>R. 5.</u>

The following *truth table* summarises the above-mentioned logical connectors for the two propositions p and q:

Truth Table

р	q	$\neg p$	$p \lor q$	$p \wedge q$	$p \Rightarrow q$	$p \Leftrightarrow q$	p xor q
Т	Т	F	Т	F	Т	Т	F
Т	F	F	Т	F	F	F	Т
F	Т	F	Т	F	Т	F	Т
F	F	Т	F	Т	Т	Т	F

<u>**D. 8.</u> (Tautology)**</u>

A proposition which is always true is called a *tautology*.

<u>**D.**</u> 9. (Contradiction)

A proposition which is always false is called a *contradiction*.

<u>Th. 1. (See R.1.)</u>

- 1. A proposition is <u>either</u> true <u>or</u> false.
- 2. A Proposition cannot be at the same time true <u>and</u> false.

Proof:

Let p be a proposition.

1.

We prove the compound proposition:

 $p \lor \neg p$

р	$\neg p$	$p \lor \neg p$
Т	F	Т
F	Т	Т

We have thus proved that $p \lor \neg p$ is a tautology.

2.

We prove the compound proposition:

$$\neg (p \land \neg p)$$

р	$\neg p$	$p \land \neg p$	$\neg (p \land \neg p)$
Т	F	F	Т
F	Т	F	Т

We have thus proved that $p \land \neg p$ is a contradiction and $\neg (p \land \neg p)$ is a tautology.

The above rules are also known as *rules of complementation*.

<u>**R. 6.</u>** (Some Rules)</u>

Let p, q, and r be three propositions. Then we have the following rules:

1. Commutative

 $\begin{array}{l} p \lor q \Leftrightarrow q \lor p \\ p \land q \Leftrightarrow q \land p \end{array}$

2. Associative

$$p \lor (q \lor r) \Leftrightarrow (p \lor q) \lor r$$
$$p \land (q \land r) \Leftrightarrow (p \land q) \land r$$

3. Distributive

$$p \lor (q \land r) \Leftrightarrow (p \lor q) \land (p \lor r)$$
$$p \lor (q \lor r) \Leftrightarrow (p \land q) \lor (p \land r)$$

4. Idempotent

$$(p \lor p) \Leftrightarrow p (p \land p) \Leftrightarrow p$$

5. Absorption

$$p \lor (p \land q) \Leftrightarrow p$$
$$p \land (p \lor q) \Leftrightarrow p$$

6. Involution

 $\neg \neg p \Leftrightarrow p$

7. De Morgan

$$\neg (p \lor q) \Leftrightarrow \neg p \land \neg q$$
$$\neg (p \land q) \Leftrightarrow \neg p \lor \neg q$$

(Last updated: 09.08.2011)