Elementary Mathematical Logic

D. 1. (Proposition)

A proposition is a statement, which is either true (T) or false (F).

Ex. 1.

Say whether each of the following sentences is a proposition. In case of a proposition, determine its truth value:

1. The capital of Germany is Berlin.
2. How old is your father?
3. $5 \cdot 2=20$.
4. Switch the radio on.
5. Every even number greater than 2 is the sum of two primes.
6. $x>13, x \in R$

Solution:

1. A proposition with the truth value T .
2. No proposition.
3. A proposition with the truth value F .
4. No proposition.
5. A proposition whose truth value is not known, the so-called Goldbach's conjecture.
6. No proposition. Substituting a real number for x will turn the statement into a proposition having a truth value.
(Such a proposition is sometimes called a proposition form.)

R. 1. (Two Principles)

1. A proposition is either true or false.
2. A Proposition cannot be at the same time true and false.
(The two principles will later be formulated as assertions and proved.)

D. 2. (Logical Quantifiers)

We have the following quantifiers:

1. The universal quantifier: \forall means "for all", "for every".
2. The existence quantifier: \exists means "there exists at least one".
3. The extended existence qualifier: \exists ! "there exists exactly one".

R. 2. (Logical Connectors)

We have the following connectors:

1. Negation
2. Disjunction
3. Conjunction
4. Implication
5. Equivalence

D. 3. (Negation)

The negation of p is the proposition $\neg p$ which is true if, and only if, p is false:

p	$\neg p$
T	F
F	T

Ex. 2.

p :"Everybody knows Einstein."
$\neg p$:"At least one person does not know Einstein."

D. 4. (Disjunction)

The proposition p or q is true if, and only if, at least one of the two propositions is true. The disjunction will be denoted by \vee.

p	q	$p \vee q$
T	T	T
T	F	T
F	T	T
F	F	F

Ex. 3.

Denote by

$$
\begin{aligned}
& p: " 20: 4=5 " \\
& q: " 2>10 " .
\end{aligned}
$$

The (compound) proposition " $20: 4=5$ or $2>10$ " is true.

D. 5. (Conjunction)

The proposition p and q is true if, and only if, both propositions are true. The conjunction will be denoted by \wedge.

p	q	$p \wedge q$
T	T	T
T	F	F
F	T	F
F	F	F

Ex. 4.

Denote by

$$
\begin{aligned}
& p: " 20: 4=5 " \\
& q: " 2>10 " .
\end{aligned}
$$

The (compound) proposition " $20: 4=5$ and $2>10$ " is false.

D. 6. (Implication)

The proposition p implies q is false if, and only if, p is true and q is false. The implication will be denoted by \Rightarrow.

p	q	$p \Rightarrow q$
T	T	T
T	F	F
F	T	T
F	F	T

Ex. 5.

Denote by

$$
\begin{aligned}
& p: " 20: 4=5 " \\
& q: " 2>10 " .
\end{aligned}
$$

1. The (compound) proposition "If $20: 4=5$ then $2>10$ " is false.
2. The (compound) proposition "If $2>10$ then $20: 4=5$ " is true.

R. 2. (Sufficient Condition, Necessary Condition)

In the implication

$$
p \Rightarrow q
$$

p is the sufficient condition for q to be fulfilled; q is the necessary condition for p to be fulfilled.

D. 7. (Equivalence)

The equivalence $p \Leftrightarrow q$ is true whenever p and q have the same logical value.

p	q	$p \Leftrightarrow q$
T	T	T
T	F	F
F	T	F
F	F	T

Ex. 6.

Denote by

$$
\begin{aligned}
& p: " 20: 4=6 " \\
& q: " 2>10 " .
\end{aligned}
$$

The compound proposition " $20: 4=6$ if and only if $2>10$ " is true.

R. 3. (Sufficient and Necessary Condition)

In the equivalence

$$
p \Leftrightarrow q
$$

p is both sufficient and necessary condition for q to be fulfilled; q is both necessary and sufficient condition for p to be fulfilled.

R. 4. (Or Exclusion)

In electronics and some programming languages, there is also an or exclusion (the so called xor connector defined as follows:
Let p and q be two propositions. The connection p xor q is true if, and only if, p and q have different logical values.

p	q	p xor q
T	T	F
T	F	T
F	T	T
F	F	F

R. 5.

The following truth table summarises the above-mentioned logical connectors for the two propositions p and q :

Truth Table

p	q	$\neg p$	$p \vee q$	$p \wedge q$	$p \Rightarrow q$	$p \Leftrightarrow q$	p xor q
T	T	F	T	F	T	T	F
T	F	F	T	F	F	F	T
F	T	F	T	F	T	F	T
F	F	T	F	T	T	T	F

D. 8. (Tautology)

A proposition which is always true is called a tautology.

D. 9. (Contradiction)

A proposition which is always false is called a contradiction.

Th.1.(See R.1.)

1. A proposition is either true or false.
2. A Proposition cannot be at the same time true and false.

Proof:

Let p be a proposition.
1.

We prove the compound proposition:

$$
p \vee \neg p
$$

p	$\neg p$	$p \vee \neg p$
T	F	T
F	T	T

We have thus proved that $p \vee \neg p$ is a tautology.
2.

We prove the compound proposition:

$$
\neg(p \wedge \neg p)
$$

p	$\neg p$	$p \wedge \neg p$	$\neg(p \wedge \neg p)$
T	F	F	T
F	T	F	T

We have thus proved that $p \wedge \neg p$ is a contradiction and $\neg(p \wedge \neg p)$ is a tautology.
The above rules are also known as rules of complementation.

R. 6. (Some Rules)

Let p, q, and r be three propositions. Then we have the following rules:

1. Commutative

$$
p \vee q \Leftrightarrow q \vee p
$$

$$
p \wedge q \Leftrightarrow q \wedge p
$$

2. Associative

$$
\begin{aligned}
& p \vee(q \vee r) \Leftrightarrow(p \vee q) \vee r \\
& p \wedge(q \wedge r) \Leftrightarrow(p \wedge q) \wedge r
\end{aligned}
$$

3. Distributive

$$
\begin{aligned}
& p \vee(q \wedge r) \Leftrightarrow(p \vee q) \wedge(p \vee r) \\
& p \vee(q \vee r) \Leftrightarrow(p \wedge q) \vee(p \wedge r)
\end{aligned}
$$

4. Idempotent

$$
\begin{aligned}
& (p \vee p) \Leftrightarrow p \\
& (p \wedge p) \Leftrightarrow p
\end{aligned}
$$

5. Absorption

$$
\begin{aligned}
& p \vee(p \wedge q) \Leftrightarrow p \\
& p \wedge(p \vee q) \Leftrightarrow p
\end{aligned}
$$

6. Involution

$$
\neg \neg p \Leftrightarrow p
$$

7. De Morgan

$$
\begin{aligned}
& \neg(p \vee q) \Leftrightarrow \neg p \wedge \neg q \\
& \neg(p \wedge q) \Leftrightarrow \neg p \vee \neg q
\end{aligned}
$$

(Last updated: 09.08.2011)

