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Chapter IX

Series of Functions

D. 9. 1. (Pointwise Convergence)
Let { } ∈nnf  ,)( , be a sequence of functions, all defined on the same domain D . The
sequence converges pointwise towards a function D , defined on D too, if
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R. 9. 1.

0N depends not only onε , but on the point x too.

D. 9. 2.
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D. 9. 3. (Uniform Convergence)
Let in D. 9. 1. 0N be independent of the point x . The sequence{ } ∈nnf  ,)( , is then said to be
uniformly convergent.

R. 9. 2.
Similarly, we define a uniformly convergent series of functions.

D. 9. 4. (Power Series)
A power series is a series of the form
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where x is a real variable, 0x is a fixed real number called the center.

The sequence of real numbers ic is called the sequence of coefficients of the series.

T. 9. 1.
1.
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2.
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(To be continued.) 


