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Differentiable Functions
                                     Exercises (Solutions)

1.

2
2
4)()( 2

0

0 +=
−
−=

−
− x

x
x

xx
xfxf

4)2(lim
)()(

lim)2('
2

0

0

2
=+=

−
−

=
→→

x
xx

xfxf
f

xx
.

2.
Let us, for example, take
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The functions f and g  are not differentiable at 0 (as they are not continuous at 0), but
gf + is differentiable at 0 ( gf + is constant on ).
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The functions f and g  are not differentiable at 0 (as they are not continuous at 0), but gf ⋅ is
differentiable at 0 ( gf ⋅ is constant on ).
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Let
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Then the slope of the tangent line to the curve xxfy == )(  at point ,4(  )2 it
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The equation of the tangent lineT  to the curve passing through ,4(  )2 is
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Thus, this limit depends on the sign of x∆ , and this means that the function has no derivative
at the point 1=x .
Geometrically, this is in accord with the fact that at the point 1=x the given „curve“ does not
have a definite line tangent.
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Consequently, the function is not differentiable at the point 0=x .

Geometrically, the line tangent to the curve at this point forms, with the −x axis, an angle 
2
π ,

which means that it coincides with the −y axis
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If 1 ,20 =∆= xx , then
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( ) 01.41.01.0202 2 =+⋅⋅=∆y .

00.41.0202 =⋅⋅=dy

Replacing y∆ by dy yields an error of 1.0 . In many cases,  it may be considered compared to
01.4=∆y and therefore disregarded.

19.
Let xxf sin)( = , then xxf cos)(' = . We put
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20.

kxeky ⋅=' ,    kxeky ⋅= 2'' , ..., kxnn eky ⋅=)(

21.
Since xxxf −= 3)(  is a polynomial, f  is continuous on  ,0[  ]1  and differentiable on ,0]  [1
Here, we note that 0)1()0( == ff . Thus, f  satisfies all the conditions of Rolle’s Theorem.
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3

1 ∈  [1 , 
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1=c  is the desired answer.
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22.
Since

33)( 2' −= xxf   and 1
2

13
02

)0()2( =−=
−
− ff ,

therefore,

033 2 =−c

or, equivalently,
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2±=c -

Since ,0[∈c   ]2 , we have

3
2=c

as our desired solution.

23.
Since the function periodic with a period of π2  , it is sufficient to investigate it in the interval
[ ]π2 ,0 .
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π=x  the function has a maximum:

( )
2
3

2
1

2
12

6
5 =+⋅==
πxy .

Finally,

( ) ( ) ( ) 061112''
2

3 >=−⋅−−⋅−==
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Consequently, at
2

3
4

π=x  we have a minimum:

( ) 31)1(2
2

3 −=−−⋅== πxy .

24.
34' xy −= , ,04 3 =− x 0=x .

212'' xy −= , ( ) 0'' 0 ==xy

( ) 0' 0 ><xy , ( ) 00
' <>xy ,

Consequently, at 0=x the function has a maximum, namely ( ) .10 ==xy
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25.
56' xy = , 06' 5 == xy , 0=x ;

430'' xy = , ( ) 0'' 0 ==xy

( ) 0' 0 <<xy , ( ) 0' 0 >>xy .

Therefore, at 0=x the function has a minimum:

26.

( )213' −⋅= xy , ( ) 013 2 =−⋅ x , 1=x ;

( )16'' −⋅= xy , ( ) 0'' 1 ==xy

( ) 0' 1 ><xy , ( ) 0' 1 >>xy .

Consequently, at 1=x  the function does not have either a maximum or a minimum:

27.

33' 2 −= xy , 033 2 =−x , 11 −=x , 12 =x .
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xy 6'' =

( ) 06'' 1 <−=−=xy .

Thus, at 1−=x , we have a maximum:

( ) 51 =−=xy .

Further

( ) 06'' 1 >==xy

And so at 1=x , we have a minimum:

( ) 51 ==xy .

We now determine the value of the function at the end points of the interval:

( ) 153 −=−=xy , ( )
8

15
2
3 ==xy .

Thus, the greatest value of the function on the interval 



 −

2
3,3 is

( ) 51 ==xy

and the smallest value is

( ) 153 −=−=xy

28.
Let us find the critical values of the function:
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)133(4412124)(' 2323 −+−⋅=−+−= xxxxxxxf .

From the equation

0)133(4 23 =−+−⋅ xxx

we obtain the only critical point 1=x (since this equation has only one real root).
We now investigate the character of the critical point 1=x :

122412)('' 2 +−= xxxf , 0)1('' =f
2424)(''' −= xxf , 0)1(''' =f

024)()4( >=xf .

Consequently, for 1=x  the function )(xf has a minimum.

29.

     5)0( =f ⇒     5=d

     33)4( =f ⇒     2841664 =++ cba

     ;23)( 2' cbxaxxf ++=

      0)0(' =f ,   0)4(' =f  ⇒   0848        ,0 =+= bac

       




=+
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06

ba
ba

⇒      4
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8
7 =−= ba .
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Thus, we have

5
4
21

8
7)( 23 +⋅⋅−= xxxf

30.
2

2' xexy −⋅−= ; )12(2'' 22

−⋅= − xey x .

0)12(2 22

=−⋅− xe x ⇒
2

1       ,
2

1
21 =−= xx .

For     
2

1−<x we have   0'' >y .

For     
2

1−>x we have   0'' <y ;

The second derivative changes sign when passing through the point 1x . Hence, for

2
1

1 −=x , there is a point of inflection on the curve; its coordinates are: 





−

−
2
1

  ,
2

1 e .

For     
2

1<x we have   0'' <y .

For     
2

1>x we have   0'' >y ;

Thus, there is also a point of inflection on the curve for 
2

1
2 =x ; its coordinates are:






 −
2
1

  ,
2

1 e .

Incidentally, the existence of the second point of inflection follows directly from the
symmetry of the curve about the −y axis.
From the foregoing it follows that
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for 
2

1−<<∞− x  the curve is convex;

for 
2

1
2

1 <<− x  the curve is concave;

for +∞<< x
2

1  the curve is convex.

31.

34'' xy = ; 212'' xy =

;0'' =y ;012'' 2 == xy .0=x

convex is curve      the,0''     ,0for >< yx ;
convex is curve      the,0''     ,0for >> yx .

Thus, the curve has no points of inflection.

32.

( ) 3
2

1
3
1' −−= xy ; ( ) 3

5
1

9
2'' −−−= xy

The second derivative does not vanish anywhere, but at 1=x  it does not exist ( ±∞→''y ).
Let us investigate the value 1=x :
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for ,0''          1 >< yx the curve is convex;
for ,0''          1 <> yx the curve is concave.

Consequently, at 1=x there is a point of inflection (1 ; 0).
It will be noted that for +∞→→ '   1 yx ; the curve at this point has a vertical tangent.

33.
1)
Look for vertical asymptotes:

when +∞→→ − yx      0
when −∞→→ + yx      0

Therefore, the straight line 0=x  is a vertical asymptote.

2)
Look for inclined asymptotes:

1121lim12limlim 2

2

=



 −+=−+==

±∞→±∞→±∞→ xxx
xx

x
yk

xxx
,

that is

[ ] 212lim12lim12limlim
222

=



 −=







 −−+=







−−+=−=

±∞→±∞→±∞→±∞→ xx
xxxx

x
xxxyb

xxxx
,

or, finally,

2=b .

Therefore, the straight line

2+= xy

is an inclined asymptote to the given curve.
To investigate the mutual position of a curve and an asymptote, let us consider the difference
of the ordinates of the curve and the asymptote for one and the same value of x :

( )
x

x
x

xx 12122

−=+−−+ .

This difference is negative for 0>x , and positive for 0<x ; and so for 0>x the curve lies
below the asymptote, and for 0<x , it lies above the asymptote.
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34.
1)
It is obvious that there are no vertical asymptotes.

2)
Look for inclined asymptotes:

.11sinlimsinlimlim =







+⋅=+==

−

+∞→

−

+∞→+∞→ x
xe

x
xxe

x
yk

x

x

x

xx

[ ] 0sinlimsinlim =⋅=−+⋅= −

+∞→

−

+∞→
xexxxeb x

x

x

x
.

Hence, the straight line

xy =

is an inclined asymptote as +∞→x .

The given curve has no asymptote as −∞→x . Indeed, the limit 
x
y

x −∞→
lim  does not exist, since

1sin +⋅=
−

x
xe

x
y x

 . (Here, the first term increases without bound as −∞→x .)

35.

21
)(

x
xxfy
+

==

1. Domain

=)( fD .
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2. Continuity

The function is continuous in )( fD .

3. Symmetry

The function is odd, since

)(
1)(1

)( 22 xf
x

x
x

xxf =
+

=
−+
−−=−− , )( fDx ∈∀ .

4. Points of Intersection with the Axes

0=x ⇔  0=y

5. Domains of Decrease and Increase

( )22

2

1
1)('

x
xxf

+

−=

           0)(' <xf   ⇒ 01 2 <− x  ⇒ 0)1()1( <+⋅− xx  ⇒  ,] ∞−∈x [1− ,1]∪ [∞+

)(xf decreases in ,] ∞− [1− ,1]∪ [∞+  and increases in ,1] −  [1+ .

6. Extremal Points

( ) 0:
1
1)(' 22

2

=
+
−=

x
xxf   ⇒ 11 −=x , 12 +=x     (critical points).

( )
( )32

2

1
32)(''

x
xxxf
+

−⋅=

0)1(' >−f , 0)1(' <+f .

Hence, at 11 −=x  the function )(xf  has a relative minimum and at 11 +=x  a relative
maximum:

1)1( −=−f , 1)1( +=+f

7. Domains of Convexity and Concavity

( )
( ) 0
1

32)('' 32

2

>
+

−⋅=
x

xxxf  ⇒ ( ) ( ) 033 >+⋅−⋅ xxx

⇒

)(xf is convex in [3 ,0]  [3  ,] ∪−∞− ,  concave in [ ,3]  [0  ,3] ∞+∪− .
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It hat the following points of inflection:







−−

4
3   ,3 , ( )0   ,0 , 





4
3   ,3 .

8. Asymptotes

For 0   →+∞→ yx , for 0   →−∞→ yx . Consequently, the straight line 0=y  is the only
inclined asymptote. The curve has no vertical asymptotes because the function does not
approach infinity for a single finite value of x .

9. Graph of the Curve
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