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Continuous Functions
                                     Exercises (Solutions)
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For example, take
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f and g are discontinuous at 0, but gf + is continuous at 0 ( gf + is constant on )
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For example, take





>
≤−

=
01
01

:)(
xfor
xfor

xf ,




>−
≤

=
01
01

:)(
xfor
xfor

xg

f and g are discontinuous at 0, but gf ⋅ is continuous at 0 ( gf ⋅ is constant on )

3.
Indeed,
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4.
Indeed,
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It can be shown that 0
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. The function 
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cos xx is bounded. Therefore,
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(To be continued.)
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