Chapter V

Continuous Functions

D. 5. 1. (Continuity at One Point)

Let f be a function defined on a neighbourhood of x_0 , $N_{\varepsilon}(x_0)$. f is continuous at x_0 if $\lim_{x \to x_0} f(x)$ exists and

$$\lim_{x \to x_0} f(x) = f(x_0)$$

If f is not continuous at x_0 , it is said to be discontinuous at x_0 .

<u>T. 5. 1.</u>

f and g are continuous at $x_0 \implies f + g$ is continuous at x_0

(The converse is not true!)

T. 5. 2.

f and g are continuous at $x_0 \implies f \cdot g$ is continuous at x_0

(The converse is not true!)

T. 5. 3.

f and g are continuous at x_0 and $g(x_0) \neq 0$

 $\Rightarrow \frac{f}{g} \text{ is continuous at } x_0$

(The converse is not true!)

T. 5. 4.

f and g are continuous at x_0 and g is continuous at $y_0 = f(x_0)$ $\Rightarrow g \circ f \text{ is continuous at } x_0$

(The converse is not true!)

D. 5. 2. (Removable Discontinuity)

Take a function f defined on a pointed neighborhood N of. x_0 . Suppose that f has a finite limit a at x_0 . Then we say that f has a removable discontinuity at x_0 .

<u>D. 5. 3.</u> (One-Sided Discontinuity)

The function is *left* (resp. *right*) *continuous* at x_0 if it has a left limit (resp. right limit) at x_0 and

$$\lim_{x \to x_0^-} f(x) = f(x_0)$$

(resp.
$$\lim_{x \to x_0^+} f(x) = f(x_0)$$
)

D. 5. 4. (Continuity on an Interval)

Let f be a function defined on an open interval I. f is *continuous on I* if it is continuous at every point of I.

<u>R. 5. 1.</u>

f is continuous on $I \Rightarrow f(I)$ is an interval

R. 5. 2.

f is continuous on the closed interval $I \Rightarrow f(I)$ is a closed interval

T. 5. 5. (Intermediate Value Theorem – First Version)

Let f be a function, defined on the interval [a, b]. If f is continuous on [a, b], then f achieves any value between f(a) and f(b).

T. 5. 6.(Intermediate Value Theorem – Second Version)

Let f be a function, defined on the interval [a, b]. If f is continuous on [a, b] and if $f(a) \cdot f(b) < 0$, then there exists a real number $c \in [a, b]$ such that f(c) = 0.

T. 5. 7.

Let f be a function defined on an interval I. Suppose that f is continuous on I and that f is strictly monotonous on I. Then f is a bijection from I onto f(I). The inverse function f^{-1} is continuous on f(I).