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                           Chapter IV 
 

                                 Random Variables  
 
D. 4. 1. (Random Variable) 
A random variable is a function defined on the sample space.   
 
   ( ),      X X E E S= ∈  
 
 
Ex. 4. 1.  (see Ex. 3.9.) 
A box contains 25 items, 10 of which are defective. A sample of two items will be taken, 
without replacement: 
Let  
 
  X : „number of defective items“. 
 
        1E : „both items are good“                       ⇒   0=X  
 
        2E : „exactly one item is defective“        ⇒   1=X  
 
        3E : „both items are defective“                ⇒   2=X  

 
 
Ex. 4. 2. 
Let 
  X : „temperature on 01.01.2005“ 
  E : ]24    ,0[ : time  
 
 
D. 4. 2. (Discrete and Continuous Random Variables) 

1. A random variable is called a discrete random variable if it takes only a finite or 
countably infinite number of values. (See ex. 4. 1.). 

2. A random variable is called a continuous random variable if it takes every real value 
within an interval. (See Ex. 4. 2.). 

 
Ex. 4. 3. 
1. Examples of discrete random variables: 
 

- The number of cars entering a carwash an hour. 
- The number of home mortgages approved by a bank. 

 
2. Examples of continuous random variables: 
 

- The time it takes an executive to drive to work. 
- The length of time of a particular phone call. 
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D. 4. 3. (Distribution Function) 
A distribution function is defined as: 
 
 1     ),()( RxxXPXF ∈<=  
 
Ex. 4. 4. (See Ex. 3. 9 and Ex. 4. 1.) 
We had : 
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Analytic form of the distribution function: 
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Tabular form of the distribution function: 
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Graphical form of the distribution function: 
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T. 4. 1. (Important Properties of the Distribution Function) 
1. 
 
 1     ,1)(0 RxxF ∈∀≤≤ . 
 
2. 
 
 )()(            :, 212121 xFxFxxxx ≤⇒<∀ . 
 
3. 
 
 )()()(            :, 12212121 xFxFxXxPxxxx −=<≤⇒<∀ . 
 
4. 
 
 0)(          →⇒−∞→ xFx  
 
 1)(          →⇒+∞→ xFx . 
 
5. 

)(xF  is at least left-sided continuous and has at most a finite number of jump discontinuities.      
 
 
Ex. 4. 5. 
Let X be the time in hours elapsed between the arrival of two ships at a certain port with the 
following distribution function: 
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Find the probability that 

1. the time elapsed between the arrival of two ships is less than 90 minutes. 
2. 15 minutes elapse without any ship arriving. 
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3. the time elapsed between the arrival of two ships is at least 6 minutes but less than 30 
minutes.  

 
 
Solution: 
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