Random Events and Events Algebra

<u>D. 1. 1.</u> (*Random Trial*)

A trial whose outcome cannot be predicted in advance is called a *random trial*.

D. 1. 2. (Random Event)

The outcome of a random trial is called a *random event*.

Ex. 1. 1.

Random trial: Rolling an unbiased die

Random events: j = 1, 2, ..., 6: Number appearing above

Ex. 1. 2.

Random trial: Quality control

Random events: k = 0, 1, ...: Number of defective products

Ex. 1. 3.

Random trial: Examining the lifetime of a certain kind of tyre

Random events: $t \in [0, +\infty[$: lifetime of a certain kind of tyre.

<u>R. 1. 1.</u>

The algebra of events is the application of the set theory to random events.

D. 1. 3. (Impossible and Certain Events)

An event that in all repetitions of a certain random trial will never happen is called an *impossible event*. It will be denoted by \emptyset .

An event that in all repetitions of a certain event will always occur is called a *certain event*. It will be denoted by Ω .

Ex. 1. 4.

Random trial: Rolling an unbiased die.

The random event "Throw the number 8" or $\{8\}$ is an impossible event.

The random event "Throw at most the number 6" or $\{1, 2, 3, 4, 5, 6\}$ is a certain event.

<u>**D. 1. 4.**</u> (Subevent)

The event E_1 is called a subevent of the event E_2 if it always accompanies the event E_2 .

<u>Ex. 1. 5.</u>

Random trial: Rolling an unbiased die.

Let

 E_1 : "throw an odd number",

 E_2 : "throw at most 5".

We have:

$$E_1 = \{1, 3, 5\} \subseteq \{1, 2, 3, 4, 5\} = E_2$$
.

D. 1. 5. (Equivalent Events)

$$E_1 \coloneqq E_2 \quad \Leftrightarrow \quad \left(E_1 \subseteq E_2 \quad \land \quad E_2 \subseteq E_1 \right)$$

<u>**D. 1. 6.**</u> (Sum of Events)

E is said to be the sum of the events E_i , i = 1, 2, ..., n, if <u>at least</u> one of the events E_i occurs:

$$E := \bigcup_{i=1}^{n} E_{i}$$

<u>Ex. 1. 6.</u>

Random trial: Rolling an unbiased die.

Let

 E_1 : "throw either 2 or 4",

 E_2 : "throw either 2 or 6".

We have:

$$E_1 = \{2, 4\}, \qquad E_2 = \{2, 6\},$$

 $E = E_1 \cup E_2 = \{2, 4, 6\}$

D. 1. 7. (Product of Events)

E is said to be the *product* of the events E_i , i = 1, 2, ..., n, if the events E_i occurs at the same time:

$$E \coloneqq \bigcap_{i=1}^{n} E_{i}$$

Ex. 1. 7.

Random trial: Rolling an unbiased die.

Let

 E_1 : "throw 1 or 4",

 E_2 : "throw a prime number".

We have:

$$E_1 = \{1, 4\}, \qquad E_2 = \{1, 2, 3, 5\},$$
$$E = E_1 \cap E_2 = \{1\}$$

<u>D. 1. 8.</u> (Mutually exclusive events)

The events E_1 and E_2 are said to be *mutually exclusive* if

$$E_1 \cap E_2 = \emptyset$$

Ex. 1. 8. *Random trial*: Rolling an unbiased die.

Let

 E_1 : "throw an even number",

 E_2 : "throw an odd number".

We have

 $E_1 \cap E_2 = \emptyset$

<u>D. 1. 9.</u> (Complementary Events)

The events E and \overline{E} are said to be *complementary* if

 $E \cup \overline{E} = \Omega \land E \cap \overline{E} = \emptyset$

<u>Ex. 1. 9.</u> *Random trial*: Rolling an unbiased die.

Let

 E_1 : "throw an even number", E_2 : "throw an odd number".

We have:

$$E_1 = \{2, 4, 6\}, \qquad E_2 = \{1, 2, 3\},$$
$$E_1 \cup E_2 = \{1, 2, 3, 4, 5, 6\} = \Omega , \qquad E_1 \cap E_2 = \emptyset$$

D. 1. 10. (Difference)

The *difference* of the events E_1 and E_2 , denoted by $E_1 \setminus E_2$ is defined as the case in which E_1 occurs while E_2 does not occur.

Ex. 1. 10.

Random trial: Rolling an unbiased die.

Let

 E_1 : "throw either 1 or 4", E_2 : "throw the number 4".

We have:

$$E_1 = \{1, 4\},$$
 $E_2 = \{1\},$
 $E_1 \setminus E_2 = \{4\}$

<u>T. 1. 1.</u> Let E_i , i = 1, 2, ..., n, be random events. Then we have:

The Commutative Laws:

$$E_1 \cup E_2 = E_2 \cup E_1$$
$$E_1 \cap E_2 = E_2 \cap E_1.$$

The Associative Laws:

$$E_{1} \cup (E_{2} \cup E_{3}) = (E_{2} \cup E_{1}) \cup E_{3} = E_{1} \cup E_{2} \cup E_{3}$$
$$E_{1} \cap (E_{2} \cap E_{3}) = (E_{2} \cap E_{1}) \cap E_{3} = E_{1} \cap E_{2} \cap E_{3}$$

The Distributive Laws:

$$E_{1} \cup (E_{2} \cap E_{3}) = (E_{1} \cup E_{2}) \cap (E_{1} \cup E_{3})$$
$$E_{1} \cap (E_{2} \cup E_{3}) = (E_{1} \cap E_{2}) \cup (E_{1} \cap E_{3}).$$

Further we have:

$E\cup E=E,$	$E \cap E = E$
$E \cup \overline{E} = \Omega$	$E \cap \overline{E} = \emptyset$
$E \cup \emptyset = E$	$E \cap \emptyset = \emptyset$
$E \cup \Omega = \Omega$	$E \cap \Omega = E$

De Morgan Laws.

$$\prod_{i=1}^{n} E = \bigcup_{i=1}^{n} \overline{E}_{i} ,$$
$$\prod_{i=1}^{n} E_{i} = \bigcap_{i=1}^{n} \overline{E}_{i} .$$

<u>Ex. 1. 11</u>.

A factory consists of three departments D_1, D_2, D_3 . Let

 E_i , i = 1, 2, 3: "There is <u>no</u> disturbance in D_i .

Describe the following events:

- *A*: "There is no disturbance in the three departments:"
- *B*: "There is disturbance in all departments."
- C: "There is no disturbance in at least one department."

D: "There is disturbance in at least one department."

E: "There is disturbance in at most one department."

F: "There is disturbance only in department D_3 "

G: "There is disturbance in department D_3 ."

Solution:

 $A = E_1 \cap E_2 \cap E_3$

 $B = \overline{E}_1 \cap \overline{E}_2 \cap \overline{E}_3 = \overline{E_1 \cup E_2 \cup E_3}$ $C = E_1 \cup E_2 \cup E_3$ $= (E_1 \cap E_2 \cap E_3)$ $\cup (E_1 \cap E_2 \cap \overline{E}_3) \cup (E_1 \cap \overline{E}_2 \cap E_3) \cup (\overline{E}_1 \cap E_2 \cap E_3)$ $\cup (E_1 \cap \overline{E}_2 \cap \overline{E}_3) \cup (\overline{E}_1 \cap \overline{E}_2 \cap E_3) \cup (\overline{E}_1 \cap E_2 \cap \overline{E}_3)$ $= \Omega \setminus (\overline{E}_1 \cap \overline{E}_2 \cap \overline{E}_3)$

$$D = \overline{E}_1 \cup \overline{E}_2 \cup \overline{E}_3$$
$$E = (E_1 \cap E_2 \cap E_3) \cup (\overline{E}_1 \cap E_2 \cap E_3) \cup (E_1 \cap \overline{E}_2 \cap E_3) \cup (E_1 \cap E_2 \cap \overline{E}_3)$$
$$F = E_1 \cap E_2 \cap \overline{E}_3$$

 $G = (E_1 \cap E_2 \cap \overline{E}_3) \cup (\overline{E}_1 \cap E_2 \cap \overline{E}_3) \cup (E_1 \cap \overline{E}_2 \cap \overline{E}_3) \cup (\overline{E}_1 \cap \overline{E}_2 \cap \overline{E}_3)$

D. 1. 11. (System of Mutually Exclusive and Exhaustive Events)

The events E_i , i = 1, 2, ..., n, form a *mutually exclusive and exhaustive* system if the following conditions are fulfilled:

- 1. $E_i \neq \emptyset$, $i = 1, 2, \dots, n$
- 2. $\bigcup_{i=1}^{n} E_{i} = \Omega$
- 3. $E_i \cap E_j = \emptyset, \quad i \neq j, \quad i, j = 1, 2, \dots, n$

<u>Ex. 1. 12</u>.

Determine if the following events form a *mutually exclusive and exhaustive* system:

1. Random trial: Rolling an unbiased die

E_1 : :	"throw 1 or 4"
E_2 :	"throw an odd number > 2"
<i>E</i> ₃ :	"throw an even number \neq 4".
$E_1 = \{1, 4\},\$	$E_2 = \{3, 5\}, E_3 = \{2, 6\}.$

The events form a mutually exclusive and exhaustive system, since

$$\begin{split} E_i \neq \emptyset, \quad i = 1, 2, 3 \\ E_1 \cup E_2 \cup E_3 = \Omega \\ E_1 \cap E_2 = \emptyset, \quad E_1 \cap E_3 = \emptyset, \qquad E_2 \cap E_3 = \emptyset \end{split}$$

2. Random trial: Rolling three unbiased dice.

E_1 : :	"throw at least 17"
E_2 :	"throw at most 5"
$E_1 = \{17, 18\},\$	$E_2 = \{3, 4, 5\}.$

The events do not form a mutually exclusive and exhaustive system, since among other things

 $E_1 \cup E_2 \neq \Omega$

D. 1. 12. (Field of Events)

The *field of events* F is a set with the following properties:

- 1. $\emptyset, \Omega \in F$
- 2. $E_1, E_2 \in F \implies (E_1 \cup E_2 \in F) \land (E_1 \cap E_2 \in F)$
- 3. $E \in F \implies E \in \overline{F}$
- 4. $E_i \in F, i = 1, 2, ... \Rightarrow \bigcup_i E_i \in F \land \bigcap_i E_i \in F$

<u>Ex. 1. 13</u>.

Random trial: Rolling an unbiased die. Let

E_1	::	"throw an odd number"
E_2	:	"throw an even number"

$$F = \{E_1, E_2, \Omega, \emptyset\}$$

 Ω : "throw either 1 or 2 or…6"

 \emptyset : "throw neither of the numbers 1, 2, ..., 6"

D. 1. 13. (Elementary or Atomic Event)

An *elementary* or *atomic event* is an event which is not further genuinely decomposable.

<u>Ex. 1. 14</u>.

Random trial: Rolling an unbiased die. Let

E_1 ::	"throw an odd number"
E_2 :	"throw a 6".

 E_1 is decomposable: $E_1 = \{1, 3, 5\} = \{1\} \cup \{3\} \cup \{5\}, E_2$ is not.

(Last updated: 10.05.2009)