## Random Events and Events Algebra

## D. 1. 1. (Random Trial)

A trial whose outcome cannot be predicted in advance is called a random trial.

## D. 1. 2. (Random Event)

The outcome of a random trial is called a random event.

## Ex. 1. 1.

Random trial: Rolling an unbiased die
Random events: $j=1,2, \ldots, 6$ : Number appearing above
Ex. 1. 2.
Random trial: Quality control
Random events: $k=0,1, \ldots$ : Number of defective products

## Ex. 1. 3.

Random trial: Examining the lifetime of a certain kind of tyre
Random events: $t \in[0, \quad+\infty[$ : lifetime of a certain kind of tyre.

## R. 1. 1.

The algebra of events is the application of the set theory to random events.

## D. 1. 3. (Impossible and Certain Events)

An event that in all repetitions of a certain random trial will never happen is called an impossible event. It will be denoted by $\varnothing$.
An event that in all repetitions of a certain event will always occur is called a certain event. It will be denoted by $\Omega$.

## Ex. 1. 4.

Random trial: Rolling an unbiased die.
The random event "Throw the number 8 " or $\{8\}$ is an impossible event.
The random event "Throw at most the number 6" or $\{1,2,3,4,5,6\}$ is a certain event.

## D.1.4. (Subevent)

The event $E_{1}$ is called a subevent of the event $E_{2}$ if it always accompanies the event $E_{2}$.

## Ex. 1. 5.

Random trial: Rolling an unbiased die.
Let
$E_{1}: \quad$ "throw an odd number",
$E_{2}:$ "throw at most $5 "$.

We have:

$$
E_{1}=\{1,3,5\} \subseteq\{1,2,3,4,5\}=E_{2} .
$$

## D. 1. 5. (Equivalent Events)

$$
E_{1}:=E_{2} \quad \Leftrightarrow \quad\left(E_{1} \subseteq E_{2} \wedge \quad E_{2} \subseteq E_{1}\right)
$$

## D. 1. 6. (Sum of Events)

$E$ is said to be the sum of the events $E_{i}, i=1,2, \ldots, n$, if at least one of the events $E_{i}$ occurs:

$$
E:=\bigcup_{i=1}^{n} E_{i}
$$

Ex. 1. 6.
Random trial: Rolling an unbiased die.
Let

$$
\begin{array}{ll}
E_{1}: \quad \text { "throw either } 2 \text { or } 4 ", \\
E_{2}: & " t h r o w ~ e i t h e r ~ \\
2 & \text { or } 6 " .
\end{array}
$$

We have:

$$
\begin{aligned}
& E_{1}=\{2,4\}, \quad E_{2}=\{2,6\}, \\
& E=E_{1} \cup E_{2}=\{2,4,6\}
\end{aligned}
$$

## D. 1. 7. (Product of Events)

$E$ is said to be the product of the events $E_{i}, i=1,2, \ldots, n$, if the events $E_{i}$ occurs at the same time:

$$
E:=\bigcap_{i=1}^{n} E_{i}
$$

## Ex. 1. 7.

Random trial: Rolling an unbiased die.
Let
$E_{1}: \quad$ "throw 1 or $4 "$,
$E_{2}: \quad$ "throw a prime number".

We have:

$$
\begin{aligned}
& E_{1}=\{1,4\}, \quad E_{2}=\{1,2,3,5\}, \\
& E=E_{1} \cap E_{2}=\{1\}
\end{aligned}
$$

## D. 1.8. (Mutually exclusive events)

The events $E_{1}$ and $E_{2}$ are said to be mutually exclusive if

$$
E_{1} \cap E_{2}=\varnothing
$$

## Ex. 1. 8.

Random trial: Rolling an unbiased die.
Let

$$
\begin{array}{ll}
E_{1}: & \text { "throw an even number", } \\
E_{2}: & \text { "throw an odd number". }
\end{array}
$$

We have

$$
E_{1} \cap E_{2}=\varnothing
$$

## D. 1.9. (Complementary Events)

The events $E$ and $\bar{E}$ are said to be complementary if

$$
E \cup \bar{E}=\Omega \quad \wedge \quad E \cap \bar{E}=\varnothing
$$

## Ex. 1.9.

Random trial: Rolling an unbiased die.
Let
$E_{1}: \quad$ "throw an even number",
$E_{2}:$ "throw an odd number", $E_{2}$ : "throw an odd number".

We have:

$$
\begin{aligned}
& E_{1}=\{2,4,6\}, \quad E_{2}=\{1,2,3\}, \\
& E_{1} \cup E_{2}=\{1,2,3,4,5,6\}=\Omega, \quad E_{1} \cap E_{2}=\varnothing
\end{aligned}
$$

## D. 1. 10. (Difference)

The difference of the events $E_{1}$ and $E_{2}$, denoted by $E_{1} \backslash E_{2}$ is defined as the case in which $E_{1}$ occurs while $E_{2}$ does not occur.

## Ex. 1. 10.

Random trial: Rolling an unbiased die.

## Let

$E_{1}: \quad$ "throw either 1 or $4 "$,
$E_{2}: \quad$ "throw the number $4 "$.

We have:

$$
\begin{aligned}
& E_{1}=\{1,4\}, \\
& E_{1} \backslash E_{2}=\{4\}
\end{aligned}
$$

## T. 1. 1.

Let $E_{i}, i=1,2, \ldots, n$, be random events. Then we have:
The Commutative Laws:

$$
\begin{aligned}
& E_{1} \cup E_{2}=E_{2} \cup E_{1} \\
& E_{1} \cap E_{2}=E_{2} \cap E_{1} .
\end{aligned}
$$

The Associative Laws:

$$
\begin{aligned}
& E_{1} \cup\left(E_{2} \cup E_{3}\right)=\left(E_{2} \cup E_{1}\right) \cup E_{3}=E_{1} \cup E_{2} \cup E_{3} \\
& E_{1} \cap\left(E_{2} \cap E_{3}\right)=\left(E_{2} \cap E_{1}\right) \cap E_{3}=E_{1} \cap E_{2} \cap E_{3}
\end{aligned}
$$

The Distributive Laws:

$$
\begin{aligned}
& E_{1} \cup\left(E_{2} \cap E_{3}\right)=\left(E_{1} \cup E_{2}\right) \cap\left(E_{1} \cup E_{3}\right) \\
& E_{1} \cap\left(E_{2} \cup E_{3}\right)=\left(E_{1} \cap E_{2}\right) \cup\left(E_{1} \cap E_{3}\right) .
\end{aligned}
$$

Further we have:

$$
\begin{array}{ll}
E \cup E=E, & E \cap E=E \\
E \cup \bar{E}=\Omega & E \cap \bar{E}=\varnothing \\
E \cup \varnothing=E & E \cap \varnothing=\varnothing \\
E \cup \Omega=\Omega & E \cap \Omega=E
\end{array}
$$

De Morgan Laws.

$$
\begin{aligned}
& \bar{n} \\
& \bigcap_{i=1} E=\bigcup_{i=1}^{n} \bar{E}_{i} \\
& \overline{u^{n}} \\
& \bigcup_{i=1}=\bigcap_{i=1}^{n} \bar{E}_{i} .
\end{aligned}
$$

## Ex. 1. 11.

A factory consists of three departments $D_{1}, D_{2}, D_{3}$. Let
$E_{i}, i=1,2,3$ : "There is no disturbance in $D_{i}$.
Describe the following events:
A: "There is no disturbance in the three departments:"
$B$ : "There is disturbance in all departments."
$C$ : "There is no disturbance in at least one department."
$D$ : "There is disturbance in at least one department."
$E: \quad$ "There is disturbance in at most one department."
$F$ : "There is disturbance only in department $D_{3}$ "
$G$ : "There is disturbance in department $D_{3}$."

## Solution:

$A=E_{1} \cap E_{2} \cap E_{3}$
$B=\bar{E}_{1} \cap \bar{E}_{2} \cap \bar{E}_{3}=\overline{E_{1} \cup E_{2} \cup E_{3}}$
$C=E_{1} \cup E_{2} \cup E_{3}$
$=\left(E_{1} \cap E_{2} \cap E_{3}\right)$
$\cup\left(E_{1} \cap E_{2} \cap \bar{E}_{3}\right) \cup\left(E_{1} \cap \bar{E}_{2} \cap E_{3}\right) \cup\left(\bar{E}_{1} \cap E_{2} \cap E_{3}\right)$
$\cup\left(E_{1} \cap \bar{E}_{2} \cap \bar{E}_{3}\right) \cup\left(\bar{E}_{1} \cap \bar{E}_{2} \cap E_{3}\right) \cup\left(\bar{E}_{1} \cap E_{2} \cap \bar{E}_{3}\right)$
$=\Omega \backslash\left(\bar{E}_{1} \cap \bar{E}_{2} \cap \bar{E}_{3}\right)$
$D=\bar{E}_{1} \cup \bar{E}_{2} \cup \bar{E}_{3}$
$E=\left(E_{1} \cap E_{2} \cap E_{3}\right) \cup\left(\bar{E}_{1} \cap E_{2} \cap E_{3}\right) \cup\left(E_{1} \cap \bar{E}_{2} \cap E_{3}\right) \cup\left(E_{1} \cap E_{2} \cap \bar{E}_{3}\right)$
$F=E_{1} \cap E_{2} \cap \bar{E}_{3}$
$G=\left(E_{1} \cap E_{2} \cap \bar{E}_{3}\right) \cup\left(\bar{E}_{1} \cap E_{2} \cap \bar{E}_{3}\right) \cup\left(E_{1} \cap \bar{E}_{2} \cap \bar{E}_{3}\right) \cup\left(\bar{E}_{1} \cap \bar{E}_{2} \cap \bar{E}_{3}\right)$

## D. 1. 11. (System of Mutually Exclusive and Exhaustive Events)

The events $E_{i}, i=1,2, \ldots, n$, form a mutually exclusive and exhaustive system if the following conditions are fulfilled:

1. $\quad E_{i} \neq \varnothing, \quad i=1,2, \ldots, n$
2. $\bigcup_{i=1}^{n} E_{i}=\Omega$
3. $\quad E_{i} \cap E_{j}=\varnothing, \quad i \neq j, \quad i, j=1,2, \ldots, n$

## Ex. 1. 12.

Determine if the following events form a mutually exclusive and exhaustive system:

1. Random trial: Rolling an unbiased die

$$
\begin{array}{ll}
E_{1}:: & \text { "throw } 1 \text { or } 4 " \\
E_{2}: & \text { "throw an odd number }>2 " \\
E_{3}: & \text { "throw an even number } \neq 4 \text { ". } \\
E_{1}=\{1,4\}, & E_{2}=\{3,5\}, \quad E_{3}=\{2,6\} .
\end{array}
$$

The events form a mutually exclusive and exhaustive system, since

$$
\begin{aligned}
& E_{i} \neq \varnothing, \quad i=1,2,3 \\
& E_{1} \cup E_{2} \cup E_{3}=\Omega \\
& E_{1} \cap E_{2}=\varnothing, \quad E_{1} \cap E_{3}=\varnothing, \quad E_{2} \cap E_{3}=\varnothing
\end{aligned}
$$

2. Random trial: Rolling three unbiased dice.

$$
\begin{array}{ll}
E_{1}:: & \text { "throw at least 17"، } \\
E_{2}: & \text { "throw at most 5" } \\
E_{1}=\{17,18\}, & E_{2}=\{3,4,5\} .
\end{array}
$$

The events do not form a mutually exclusive and exhaustive system, since among other things

$$
E_{1} \cup E_{2} \neq \Omega
$$

## D. 1. 12. (Field of Events)

The field of events $F$ is a set with the following properties:

1. $\varnothing, \Omega \in F$
2. $E_{1}, E_{2} \in F \quad \Rightarrow \quad\left(E_{1} \cup E_{2} \in F\right) \wedge\left(E_{1} \cap E_{2} \in F\right)$
3. $E \in F \Rightarrow E \in \bar{F}$
4. $\quad E_{i} \in F, i=1,2, \ldots \Rightarrow \bigcup_{i} E_{i} \in F \wedge \bigcap_{\mathrm{i}} E_{i} \in F$

## Ex. 1. 13.

Random trial: Rolling an unbiased die. Let

$$
\begin{array}{ll}
E_{1}:: & \text { "throw an odd number" } \\
E_{2}: & \text { "throw an even number" } \\
F= & \left\{E_{1}, E_{2}, \Omega, \varnothing\right\}
\end{array}
$$

$\Omega:$,throw either 1 or 2 or... 6 "
$\varnothing:$,throw neither of the numbers $1,2, \ldots, 6$ "

## D. 1. 13. (Elementary or Atomic Event)

An elementary or atomic event is an event which is not further genuinely decomposable.

## Ex. 1. 14.

Random trial: Rolling an unbiased die. Let

$$
\begin{array}{ll}
E_{1}:: & \text { „throw an odd number" } \\
E_{2}: & \text { „throw a 6". }
\end{array}
$$

$E_{1}$ is decomposable: $E_{1}=\{1,3,5\}=\{1\} \cup\{3\} \cup\{5\}, E_{2}$ is not.
(Last updated: 10.05.2009)

