Chapter VI

Parameters of a Random Variable

Solutions

6. 7.

a)

$$
F(x)=\left\{\begin{array}{cc}
0 & -\infty<x \leq-3 \\
0.10 & -3<x \leq 0 \\
0.25 & 0<x \leq 1 \\
0.35 & 1<x \leq 2 \\
0.60 & 2<x \leq 3 \\
1 & 3<x<+\infty
\end{array}\right.
$$

b)

$$
\begin{aligned}
P(X>0) & =P(X=1)+P(X=2)+P(X=3) \\
& =0.10+0.25+0.40=0.75
\end{aligned}
$$

c)

$$
\begin{aligned}
& E(X)=-3 \cdot 0.1+0 \cdot 0.15+1 \cdot 0.1+2 \cdot 0.25+3 \cdot 0.4=1.5 \\
& D^{2}(X)=(-3)^{2} \cdot 0.1+0^{2} \cdot 0.15+1^{2} \cdot 0.1+2^{2} \cdot 0.25+3^{2} \cdot 0.4-(1.5)^{2}=3.35
\end{aligned}
$$

6. 2.

Let
$X \quad$: „Number of elements that will fall out".

$$
\begin{aligned}
E(X) & =\sum_{i=1}^{3} p_{i} \cdot x_{i}=0 \cdot\left(1-p_{1}\right) \cdot\left(1-p_{2}\right) \cdot\left(1-p_{3}\right) \\
& +1 \cdot\left[p_{1} \cdot\left(1-p_{2}\right) \cdot\left(1-p_{3}\right)+p_{2} \cdot\left(1-p_{1}\right) \cdot\left(1-p_{3}\right)+p_{3} \cdot\left(1-p_{1}\right) \cdot\left(1-p_{2}\right)\right] \\
& +2 \cdot\left[p_{1} \cdot p_{2} \cdot\left(1-p_{3}\right)+p_{1} \cdot p_{3} \cdot\left(1-p_{2}\right)+p_{2} \cdot p_{3} \cdot\left(1-p_{1}\right)\right]+3 \cdot p_{1} \cdot p_{2} \cdot p_{3} \\
& =p_{1}+p_{2}+p_{3} .
\end{aligned}
$$

6. 3.

a)

$$
\begin{aligned}
& \int_{-\infty}^{+\infty} f(x) d x=\int_{0}^{1} \alpha \cdot x^{2} \cdot(1-x) d x=1 \\
& \alpha \cdot\left[\frac{x^{3}}{3}-\frac{x^{4}}{4}\right]_{0}^{1}=1, \quad \alpha \cdot\left(\frac{1}{3}-\frac{1}{4}\right)=1, \quad \alpha=12
\end{aligned}
$$

b)

$$
\begin{aligned}
& F(x)=\left\{\begin{array}{lc}
0 & x \leq 0 \\
12\left(\frac{x^{3}}{3}-\frac{x^{4}}{4}\right) & 0<x \leq 1, \\
1 & 1<x
\end{array}\right. \\
& E(X)=\int_{0}^{1} x \cdot f(x) d x=\int_{0}^{1} 12 \cdot\left(x^{3}-x^{4}\right) d x=12 \cdot\left[\frac{x^{4}}{4}-\frac{x^{5}}{5}\right]_{0}^{1}=12 \cdot\left(\frac{1}{4}-\frac{1}{5}\right)=\frac{3}{5} . \\
& D^{2}(X)=\int_{0}^{1} x^{2} \cdot f(x) d x-(E(X))^{2}=12 \cdot \int_{0}^{1}\left(x^{4}-x^{5}\right) d x-\frac{9}{25}=12 \cdot\left[\frac{x^{5}}{5}-\frac{x^{6}}{6}\right]_{0}^{1}-\frac{9}{25}=\frac{1}{25} .
\end{aligned}
$$

c)

$$
\begin{aligned}
& P\left(X<\frac{1}{2}\right)=F\left(\frac{1}{2}\right)=12 \cdot\left[\frac{\frac{1}{8}}{3}-\frac{\frac{1}{16}}{4}\right]=0.3125 . \\
& P(X<E(X))=P\left(X<\frac{3}{5}\right)=F\left(\frac{3}{5}\right)=12 \cdot\left[\frac{\left(\frac{3}{5}\right)^{3}}{3}-\frac{\left(\frac{3}{5}\right)^{4}}{4}\right]=0.4752 .
\end{aligned}
$$

6. 5.
1.

$E(X)=4 \cdot 0.01+5 \cdot 0.08+6 \cdot 0.29+7 \cdot 0.42+8 \cdot 0.14+9 \cdot 0.06=6.78$ periods.
2.

$$
D^{2}(X)=4^{2} \cdot 0.01+5^{2} \cdot 0.08+6^{2} \cdot 0.29+7^{2} \cdot 0.42+8^{2} \cdot 0.14+9^{2} \cdot 0.06-(6.78)^{2}=1.0316
$$

3.

$$
D(X)=\sqrt{1.0316} \approx 1.02 \text { periods. }
$$

(Last revised: 07.03.2018)

