Chapter V

Discrete and Continuous Random Variables

Exercises

5. 1.

A builder orders a shipment of bricks. The random variable X, the number of broken bricks per lot, is estimated by suppliers to have the following probability function:

x_{i}	0	1	2	3	4	≥ 5
$P\left(X=x_{i}\right)$	0.7	0.1	0.05	0.05	0.03	p_{5}

1. Find p_{5}.
2. What is the probability that the number of broken bricks is at most 3 ?
3. Determine and sketch the distribution function $F(x)$ of the random variable X.
4. Find and interpret
i) $\quad F(3.8)$
ii) $\quad F(4.7)-F(1.8)$

5. 2.

The random variable X giving the number of passengers (excluding the driver) per car in rush hour traffic has the following probability function:

x_{i}	0	1	2	3	4
$P\left(X=x_{i}\right)$	0.7	p_{2}	0.1	0.05	0.05

1. Find p_{2}.
2. What is the probability that the number of passengers is at least 2 ?
3. Determine and sketch the distribution function $F(x)$ of the random variable X.
4. Find and interpret
a. $\quad F(2.06)$
b. $\quad F(3.9)-F(0.05)$

5.3.

After the start of observation on a given summer evening, the time T, in minutes until the first shooting star is observed, follows an exponential distribution for which

$$
P(T>t)=e^{-\frac{1}{10} t}
$$

where $t>0$.

1. Determine the probability that it takes between five and ten minutes for the first shooting star to be observed.
2. Determine the probability density function of T.

5. 4. (See Example 5. 2.)

A car pooling study shows that the number of passengers, X, in a car (excluding the driver) is likely to assume the values $0,1,2,3$, and 4 with probabilities given by the table

x_{i}	0	1	2	3	4
$P\left(X=x_{i}\right)$	0.7	p_{2}	0.1	0.05	0.05

1. Determine $P(X>2)$.
2. Determine $P(X \geq 2)$.
3. What is the probability that a car will have no passengers?
4. Determine the smallest value of k so that $P(X<k)>0.85$.
5. Evaluate $P(X \leq k)$ for

$$
k=-12,0,0.5,2.4,103
$$

5.5.

Let the random variable X have the following distribution function:

$$
F(x)=\left\{\begin{array}{ccc}
0 & \text { when } & x \leq-1 \\
\frac{3}{4} x+\frac{3}{4} & \text { when } & -1<x \leq \frac{1}{3} \\
1 & \text { when } & \frac{1}{3}<x .
\end{array}\right.
$$

What is the probability that that X lies in the interval $] 0, \frac{1}{3}[$?

5. 6.

Consider the function

$$
f(x)=\left\{\begin{array}{ccc}
a(3+x) & \text { when } & -3 \leq x \leq 0 \\
a(3-x) & \text { when } & 0<x \leq 3 \\
0 & \text { otherwise } &
\end{array}\right.
$$

a) For what value of a will $f(x)$ be the density function of the random variable X ?
b) Determine the distribution function of X.
c) Find the probability that X lies in the interval $\left[\frac{1}{2}, 1\right]$.

