Chapter III

Probability Algebra

Solutions

3. 4.
1.

$$
P(2)=\frac{100}{500}=0.20
$$

2.

$$
P(1 \text { or } 2)=\frac{60}{500}+\frac{100}{500}=0.32 .
$$

3.

$$
P(1 \text { or } 5)=\frac{60}{500}+\frac{40}{500}=0.20
$$

3. 2.

Denote by
$I:$ "A computer owner shops on the Internet",
$D:$ "A computer owner downloads software",
1.

$$
P(\bar{I})=1-0.17=0.83
$$

2.

$$
P(I \cup D)=P(I)+P(D)-P(I \cap D)=0.17+0.33-0.14=0.36
$$

3.

$$
P(\bar{I} \cap \bar{D})=1-(I \cup D)=1-0.36=0.64
$$

3. 4.

$$
P=\frac{1}{3} \cdot \frac{1}{3} \approx 0.11
$$

3. 5.

Denote by
$V: \quad$ „A senior citizen has been victimised"
1.

$$
\begin{aligned}
& P(V \cup B)=P(V)+P(B)-P(V \cap B) \\
& P(V \cup B)=\frac{106+145+61}{1800}+\frac{145+447}{1800}-\frac{145}{1800}=\frac{759}{1800}=0.421666666 \approx 0.42 .
\end{aligned}
$$

2.

$$
\begin{aligned}
& P(\bar{V} \cup C)=P(\bar{V})+P(C)-P(\bar{V} \cap C) \\
& P(\bar{V} \cup C)=\frac{698+447+343}{1800}+\frac{61+343}{1800}-\frac{343}{1800}=\frac{1549}{1800}=0.860555555 \approx 0.86 . .
\end{aligned}
$$

3. 6.

$$
P=(1-0.78)^{2}=0.22^{2}=0.0484 .
$$

3.7.

$$
P=0.528^{3} \approx 0.15
$$

3. 8.

Denote by
J : "A teenager has a part time job."
C : "A teenager plans to attend college."

$$
P(J \cap C)=P(C) \cdot P(J)=0.47 \cdot 0.78=0.3666
$$

(Note: It will be assumed that two events are independent.)

3. 9 .

a)

$$
P(\bar{A})=1-P(A)=1-0.3=0.7
$$

b)

$$
P(\bar{B})=1-P(B)=1-0.5=0.5
$$

c)

$$
P(A \cup B)=P(A)+P(B)-P(A \cap B)=0.3+0.5-0.2=0.6
$$

d)

$$
P(\bar{A} \cap \bar{B})=P(\overline{A \cup B})=1-P(A \cup B)=1-0.6=0.4
$$

3. 10.

Let
A: „The article is defective."
B_{i} : "the article has been produced on machine $M_{i}, i=1,2,3 . "$
We have:

$$
P\left(B_{1}\right)=0.20, \quad P\left(B_{2}\right)=0.45, \quad P\left(B_{3}\right)=0.35,
$$

$$
P\left(A / B_{1}\right)=0.02, \quad P\left(A / B_{2}\right)=0.05, \quad P\left(A / B_{3}\right)=0.03 .
$$

1.

$$
\begin{aligned}
P\left(\bar{B}_{2} / A\right) & =1-P\left(B_{2} / A\right) \\
& =1-\frac{0.45 \cdot 0.05}{0.20 \cdot 0.02+0.45 \cdot 0.05+0.35 \cdot 0.03} \\
& =1-\frac{0.0225}{0.037} \approx 0.39
\end{aligned}
$$

2.

$$
\begin{aligned}
P\left(\bar{B}_{1} / \bar{A}\right) & =1-P\left(B_{1} / \bar{A}\right) \\
& =1-\frac{0.20 \cdot 0.98}{0.20 \cdot 0.98+0.45 \cdot 0.95+0.35 \cdot 0.93} \\
& =1-\frac{0.1960}{0.949} \approx 0.79 .
\end{aligned}
$$

3. 11.

Let
A: „The article is of the highest quality."
B_{i} : "The article has been produced on machine $M_{i}, i=1,2,3 . "$
We have:

$$
\begin{array}{lll}
P\left(B_{1}\right)=0.30, & P\left(B_{2}\right)=0.45, & P\left(B_{3}\right)=0.25, \\
P\left(A / B_{1}\right)=0.95, & P\left(A / B_{2}\right)=0.92, & P\left(A / B_{3}\right)=0.98 .
\end{array}
$$

1.

$$
\begin{aligned}
P\left(\bar{B}_{1} / \bar{A}\right) & =1-P\left(B_{1} / \bar{A}\right) \\
& =1-\frac{0.30 \cdot 0.05}{0.30 \cdot 0.05+0.45 \cdot 0.08+0.25 \cdot 0.02} \\
& =1-\frac{0.015}{0.056} \approx 0.73
\end{aligned}
$$

2.

$$
P\left(\bar{B}_{2} / A\right)=1-P\left(B_{2} / A\right)
$$

$$
\begin{aligned}
& =1-\frac{0.45 \cdot 0.92}{0.30 \cdot 0.95+0.45 \cdot 0.92+0.25 \cdot 0.98} \\
& =1-\frac{0.414}{0.944} \approx 0.56
\end{aligned}
$$

3. 12.

Definition of events:
D : „An individual favours death penalty", M : ,An individual is a man. "

$$
\begin{aligned}
P(D / M) & =\frac{P(D \cap M)}{P(M)} \\
& =\frac{0.459}{0.459+0.441}=0.51
\end{aligned}
$$

3. 13.

Definition of events:
A: "The defect will not be present in any particular product"
B : „The quality control will yield a positive result".
Therefore, we have:

$$
P(A)=0.005, \quad, \quad P(B / A)=0.99, \quad P(B / \bar{A})=0.05
$$

1.

$$
P(\bar{A})=1-P(A)=1-0.005=0995
$$

2.

$$
P(\bar{B} / A)=1-(B / A)=1-0.99=0.01 .
$$

3.

$$
P(\bar{B} / \bar{A})=1-P(B / \bar{A})=1-0.05=0.95 .
$$

4.

$$
\begin{aligned}
P(B) & =P(B / A) \cdot P(A)+P(B / \bar{A}) \cdot P(\bar{A}) \\
& =0.99 \cdot 0.005+0.05 \cdot 0.995=0.0547 .
\end{aligned}
$$

5.

$$
\begin{aligned}
P(\bar{B}) & =P(\bar{B} / A) \cdot P(A)+P(\bar{B} / \bar{A}) \cdot P(\bar{A}) \\
& =0.01 \cdot 0.005+0.95 \cdot 0.995=0.9453
\end{aligned}
$$

$$
(=1-P(B)) .
$$

6.

$$
P(A / B)=\frac{P(B / A) \cdot P(A)}{P(B)}=\frac{0.99 \cdot 0.005}{0.0547}=0.0905 .
$$

7.

$$
P(\bar{A} / B)=\frac{P(B / \bar{A}) \cdot P(\bar{A})}{P(B)}=\frac{0.05 \cdot 0.995}{0.0547}=0.9095 \quad(=1-P(A / B))
$$

8.

$$
P(\bar{A} / \bar{B})=\frac{P(\bar{B} / \bar{A}) \cdot P(\bar{A})}{P(\bar{B})}=\frac{0.95 \cdot 0.995}{0.9453}=0.99995
$$

9.

$$
P(A / \bar{B})=\frac{P(\bar{B} / A) \cdot P(A)}{P(\bar{B})}=\frac{0.01 \cdot 0.005}{0.9453}=0.00005(=1-P(\bar{A} / \bar{B})) .
$$

3. 14.

Denote by
I : "Increase of capital investment."
R : "Rise of structural steel prices."
1.

$$
P(\bar{R} / I)=0.10
$$

2.

$$
\begin{aligned}
P(R) & =P(I \cap R)+P(\bar{I} \cap R) \\
& =P(I) \cdot P(R / I)+P(\bar{I}) \cdot P(R(R / \bar{I}) \\
& =0.60 \cdot 0.90+0.40 \cdot 0.40=0.70 .
\end{aligned}
$$

3.

$$
\begin{aligned}
P(R / I) & =\frac{P(I \cap R)}{P(R)}=\frac{P(I) \cdot P(R / I)}{P(I) \cdot P(R / I)+P(\bar{I}) \cdot P(R(R / \bar{I})} \\
& =\frac{0.60 \cdot 0.90}{0.60 \cdot 0.90+0.40 \cdot 0.40}=\frac{0.54}{0.70} \approx 0.77 .
\end{aligned}
$$

3. 15.

Denote by

$$
\begin{array}{ll}
A: & \text { "An item is of high quality", } \\
B_{i}(i=1,2,3): & \text { "An item is produced on machine } i " .
\end{array}
$$

We have:

$$
\begin{array}{lll}
P\left(B_{1}\right)=0.30, & P\left(B_{2}\right)=0.50, & P\left(B_{3}\right)=0.20, \\
P\left(A / B_{1}\right)=0.80, & P\left(A / B_{2}\right)=0.70, & P\left(A / B_{3}\right)=0.90 .
\end{array}
$$

1.

$$
P(A)=\sum_{i=1}^{3} P\left(B_{i}\right) \cdot P\left(A / B_{i}\right)=0.30 \cdot 0.80+0.50 \cdot 0.70+0.20 \cdot 0.90=0.77 .
$$

2.

$$
P(\bar{A})=1-P(A)=1-0.77=0.23 .
$$

3.

$$
P\left(B_{1} / A\right)=\frac{P\left(B_{1}\right) \cdot P\left(A / B_{1}\right)}{P(A)}=\frac{0.30 \cdot 0.8}{0.77}=0.311688311 \approx 0.31 .
$$

4.

$$
P\left(B_{3} / A\right)=\frac{P\left(B_{3}\right) \cdot P\left(A / B_{3}\right)}{P(A)}=\frac{0.20 \cdot 0.9}{0.77}=0.233766233 \approx 0.23 .
$$

5.

$$
P\left(\bar{B}_{3} / \bar{A}\right)=1-P\left(B_{3} / \bar{A}\right)=1-\frac{P\left(\bar{B}_{3}\right) \cdot P\left(\bar{A} / B_{3}\right)}{P(\bar{A})}=1-\frac{0.20 \cdot 0.10}{0.23}=0.913043478 \approx 0.91
$$

6.

$$
P\left(\bar{B}_{2} / \bar{A}\right)=1-P\left(B_{2} / \bar{A}\right)=1-\frac{P\left(\bar{B}_{2}\right) \cdot P\left(\bar{A} / B_{2}\right)}{P(\bar{A})}=1-\frac{0.50 \cdot 0.30}{0.23}=0.347826087 \approx 0.35 .
$$

