Probability Theory Formulary

I. Events Algebra

Random Trial

A trial whose outcome cannot be predicted in advance is called a random trial.

Random Event

The outcome of a random trial is called a random event.

Impossible and Certain Events

An event that in all repetitions of a certain random trial will never happen is called an impossible event. It will be denoted by \varnothing.
An event that in all repetitions of a certain event will always occur is called a certain event. It will be denoted by Ω.

Subevent

The event E_{1} is called a subevent of the event E_{2} if it always accompanies the event E_{2}. We write

$$
E_{1} \subseteq E_{2} .
$$

Sum of Events

E is said to be the sum of the events $E_{i}, i=1,2, \ldots, n$, if at least one of the events E_{i} occurs:

$$
E:=\bigcup_{i=1}^{n} E_{i}
$$

Product of Events

E is said to be the product of the events $E_{i}, i=1,2, \ldots, n$, if the events E_{i} occurs at the same time:

$$
E:=\bigcap_{i=1}^{n} E_{i} .
$$

Mutually exclusive events

The events E_{1} and E_{2} are said to be mutually exclusive if

$$
E_{1} \cap E_{2}=\varnothing
$$

Complementary Events

The events E and \bar{E} are said to be complementary if

$$
E \cup \bar{E}=\Omega \quad \wedge \quad E \cap \bar{E}=\varnothing
$$

Difference

The difference of the events E_{1} and E_{2}, denoted by $E_{1} \backslash E_{2}$ is defined as the case in which E_{1} occurs while E_{2} does not occur.

System of Mutually Exclusive and Exhaustive Events

The events $E_{i}, i=1,2, \ldots, n$, form a mutually exclusive and exhaustive system if the following conditions are fulfilled:

1. $\quad E_{i} \neq \varnothing, \quad i=1,2, \ldots, n$
2. $\bigcup_{i=1}^{n} E_{i}=\Omega$
3. $\quad E_{i} \cap E_{j}=\varnothing, \quad i \neq j, \quad i, j=1,2, \ldots, n$

Elementary or Atomic Event

An elementary or atomic event is an event which is not further genuinely decomposable.

II. Probability Algebra

Addition rule:

$$
P(A \cup B)=P(A)+P(B)-P(A \cap B)
$$

Conditional probability

$$
P(A / B):=\left\{\begin{array}{lll}
\frac{P(A \cap B)}{P(B)} & \text { if } & P(B)>0 \\
0 & \text { if } & P(B)=0
\end{array}\right.
$$

Multiplication rule

$$
\begin{aligned}
P(A \cap B) & =P(B) \cdot P(A / B) \\
& =P(A) \cdot P(B / A)
\end{aligned}
$$

Dependent and independent events

The event A is said to be independent of B if

$$
P(A)=P(A / B) .
$$

Otherwise, A is said to be dependent of B.

Multiplication rule for two independent events

Let $A, B \in S$ be two independent events. Then

$$
P(A \cap B)=P(A) \cdot P(B)
$$

Multiplication rule for \boldsymbol{n} independent events

Let $E_{i}, i=1,2, \ldots, n$, be independent events. Then

$$
P\left(\bigcap_{i=1}^{n} E_{i}\right)=\prod_{i=1}^{n} P\left(E_{i}\right) .
$$

Addition rule for n independent events

Let $E_{i}, i=1,2, \ldots, n$, be independent events. Then

$$
P\left(\bigcup_{i=1}^{n} E_{i}\right)=1-\prod_{i=1}^{n}\left(1-P\left(E_{i}\right)\right)
$$

Total probability

Let $B_{i}, i=1,2, \ldots, n$, form a group of mutually exclusive and exhaustive events. For an arbitrary event A we have

$$
P(A)=\sum_{i=1}^{n} P\left(A / B_{i}\right) \cdot P\left(B_{i}\right) .
$$

Bayes-Theorem

Let $B_{i}, i=1,2, \ldots, n$, form a group of mutually exclusive and exhaustive events. For an arbitrary event $A \neq \varnothing$ we have:

$$
P\left(B_{i} / A\right)=\frac{P\left(A / B_{i}\right) \cdot P\left(B_{i}\right)}{\sum_{i=1}^{n} P\left(A / B_{i}\right) \cdot P\left(B_{i}\right)}, \quad i=1,2, \ldots, n .
$$

Sampling schemes

Consider a finite set of N elements, $M \leq N$ elements of which have a certain property. Let us choose a sample of $n \leq N$ elements.
The probability that the sample contains $m \leq n$ elements with the above-mentioned property is in case of

1. Nonreplacement:

$$
P_{\text {noplacement }}=\frac{\binom{M}{m} \cdot\binom{N-M}{n-m}}{\binom{N}{n}}
$$

2. Replacement

$$
P_{\text {nreplacet }}=\binom{n}{m} \cdot p^{m} \cdot q^{n-m}, \quad \frac{M}{N}=: p, \quad q:=1-p
$$

III. Random Variables

Distribution function

A distribution function is defined as:

$$
F(X)=P(X<x), \quad x \in R^{1}
$$

Important properties of the distribution function

1.

$$
0 \leq F(x) \leq 1, \quad \forall x \in R^{1} .
$$

2.

$$
\forall x_{1}, x_{2}: x_{1}<x_{2} \quad \Rightarrow \quad F\left(x_{1}\right) \leq F\left(x_{2}\right) .
$$

3.

$$
\forall x_{1}, x_{2}: x_{1}<x_{2} \quad \Rightarrow \quad P\left(x_{1} \leq X<x_{2}\right)=F\left(x_{2}\right)-F\left(x_{1}\right) .
$$

4.

$$
\begin{aligned}
x \rightarrow-\infty & \Rightarrow F(x) \rightarrow 0 \\
x \rightarrow+\infty & \Rightarrow F(x) \rightarrow 1
\end{aligned}
$$

5.

$F(x)$ is at least left-sided continuous and has at most a finite number of jump discontinuities.

Probability function

If X is a discrete random variable, then the function

$$
p(x)=P(X=x)
$$

defined on the outcomes of X is called the probability function of the discrete random variable X.
If X has the outcomes $x_{i}, i=1,2, \ldots, n$, then we can write:

x_{i}	x_{1}	x_{2}	\cdots	x_{n}
$p_{i}=P\left(X=x_{i}\right)=f\left(x_{i}\right)$	p_{1}	p_{2}	\cdots	p_{n}

Distribution function

$$
F(x)=P(X<x)=\left\{\begin{array}{lll}
0 & \text { for } & x \leq x_{1} \\
\sum_{i=1}^{k} p_{i} & \text { for } & x_{k}<x \leq x_{k+1} \\
1 & \text { for } & x>x_{n}
\end{array}, \quad k=1,2, \ldots, n-1\right.
$$

Density Function

Let $F(x)$ be a differentiable distribution function of a continuous random variable X. The function

$$
f(x):=F^{\prime}(x)
$$

is called the (probability) density function of X.

Important properties of a density function:

1.

$$
\begin{aligned}
F(x) & =P(X<x) \\
& =P(-\infty<X<x) \\
& =\int_{-\infty}^{x} f(t) d t .
\end{aligned}
$$

2.

$$
\begin{aligned}
P(a \leq X<b) & =F(b)-F(a) \\
& =\int_{a}^{b} f(x) d x .
\end{aligned}
$$

3.

$$
P(-\infty<X<+\infty)=\int_{-\infty}^{+\infty} f(x) d x=1
$$

Expected value

The expected value of the random variable X, denoted by $E(X)$, is defined as

$$
E(X):= \begin{cases}\sum_{i=1}^{\infty} x_{i} \cdot p_{i} & \text { when } X \text { discrete } \\ \int_{-\infty}^{+\infty} x \cdot f(x) d x & \text { when } X \text { continuous }\end{cases}
$$

Variance or dispersion, standard deviation

The dispersion or variance of the random variable X, denoted by $D^{2}(X)$, is defined as

$$
D^{2}(X):=E(X-E(X))^{2}
$$

i. e.

$$
D^{2}(X):= \begin{cases}\sum_{i=1}^{\infty}\left(x_{i}-E(X)\right)^{2} \cdot p_{i} & \text { when } X \text { discrete } \\ \int_{. \infty}^{+\infty}(x-E(X))^{2} \cdot f(x) d x & \text { when } X \text { continuous }\end{cases}
$$

under the assumption that the expected value exists.
The standard deviation of the random variable X, denoted by $D(X)$, is defined as

$$
\begin{aligned}
& D(X):=\sqrt{D^{2}(X)} \quad(>0) \\
& D^{2}(X):= \begin{cases}\sum_{i=1}^{\infty} x_{i}^{2} \cdot p_{i}-\left(\sum_{i=1}^{\infty} x_{i} \cdot p_{i}\right)^{2} & \text { when } X \text { discrete } \\
\int_{-\infty}^{\infty} x^{2} \cdot f(x) d x-\left(\int_{-\infty}^{+\infty} x \cdot f(x)\right)^{2} & \text { when } X \text { continuous }\end{cases}
\end{aligned}
$$

Standardisation:

Let

$$
Z=a X+b, \quad a, b=\text { const } .
$$

Then

$$
\begin{aligned}
& E(a X+b)=a \cdot E(X)+b . \\
& D^{2}(a X+b)=a^{2} \cdot D^{2}(X) .
\end{aligned}
$$

The random variable Z is called a standardised random variable if

$$
E(Z)=0, \quad D^{2}(Z)=1 .
$$

The process

$$
Z=g(X):=\frac{X-\mu}{\sigma}=\frac{1}{\sigma} \cdot X-\frac{\mu}{\sigma}
$$

is called standardisation.

IV. Special Discrete Distribution Functions

Hypergeometric Distribution:

A discrete variable X has a hypergeometric distribution if its probability function is of the form

$$
\begin{aligned}
& P(X=x)=p_{i}=\frac{\binom{M}{x} \cdot\binom{N-M}{n-x}}{\binom{N}{n}}, \\
& x=0,1, \ldots, n ; \quad n \leq M \leq N .
\end{aligned}
$$

The probability function of the hypergeometric distribution is formally equivalent to the sampling scheme without replacement.

Let X have a hypergeometric distribution. Then

$$
\begin{aligned}
& E(X)=n \cdot \frac{M}{N}=n \cdot p, \\
& D^{2}(X)=\frac{N-n}{N-1} n \cdot p \cdot q
\end{aligned}
$$

Binomial Distribution

A discrete variable X has a binomial distribution if its probability function is of the form

$$
P(X=x)=p_{i}=\binom{n}{x} \cdot p^{x} \cdot q^{n-x}, \quad x=0,1, \ldots, n .
$$

The probability function of the binomial distribution is formally equivalent to the sampling scheme with replacement.

Let X have a binomial distribution. Then

$$
\begin{gathered}
E(X)=n \cdot p, \\
D^{2}(X)=n \cdot p \cdot q .
\end{gathered}
$$

Rule of thumb:

For a "sufficiently" large N, the hypergeometric distribution can be approximated by the binomial distribution. It will be recommended to use the following rule of thumb:
"If $10 \cdot n \leq N$, then the hypergeometric distribution can be approximated by the binomial distribution."

Poisson Distribution:

A discrete variable X has a Poisson distribution if its probability function is of the form

$$
\begin{gathered}
P(X=x)=\frac{\lambda^{x}}{x!} \cdot e^{-\lambda}, \\
x=0,1, \ldots, n .
\end{gathered}
$$

Let X have a Poisson distribution. Then

$$
E(X)=D^{2}(X)=n \cdot p=\lambda .
$$

Rule of thumb:

The binomial distribution can be approximated by the Poisson distribution for n "sufficiently" large $(n \rightarrow \infty)$ while $n \cdot p=\lambda$ remaining constant. That is why the Poisson distribution is also known as the "distribution of rare events".
It will be recommended to use the following rule of thumb:

$$
\text { "If } n \cdot p \leq 10 \text { and } n \geq 1500 p
$$

the binomial distribution can be approximated by the Poisson distribution."

V. Special Continuous Distribution Functions

A continuous variable X has normal (or Gaussian) distribution if its probability density function is of the form

$$
\begin{aligned}
f(x ; \mu, \sigma) & =\frac{1}{\sigma} \cdot \varphi\left(\frac{x-\mu}{\sigma}\right) \\
& =\frac{1}{\sigma} \cdot \frac{1}{\sqrt{2 \pi}} e^{-\frac{(x-\mu)^{2}}{2 \sigma^{2}}}, \quad x \in R^{1}
\end{aligned}
$$

Let X be a normally distributed variable. Then

$$
\begin{aligned}
& E(X)=\mu, \\
& D^{2}(X)=\sigma^{2} .
\end{aligned}
$$

The probability density function of the standardised normal distribution:

$$
f(x)=\varphi(x)=\frac{1}{\sqrt{2 \pi}} e^{-\frac{x^{2}}{2}}, \quad x \in R^{1} .
$$

The standardised normal distribution function:

$$
\begin{aligned}
F(x) & =\Phi(x) \\
& =\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{x} e^{-\frac{t^{2}}{2}} d t, \quad x \in R^{1} .
\end{aligned}
$$

Some important formulas:

$$
\begin{aligned}
& \varphi(-x ; 0,1)=\varphi(x ; 0,1), \\
& \Phi(-x ; 0,1)=1-\Phi(x ; 0,1) . \\
& P(|X-\mu|<c)=2 \cdot \Phi\left(\frac{c}{\sigma}\right)-1, \quad c \in R^{1} .
\end{aligned}
$$

"68-95-99.7 Rule" or "Empirical Rule":

All normal density curves satisfy the following property which follows from T. 8. 3.:

$$
\begin{aligned}
& P(|X-\mu|<\sigma)=0.6828 \\
& P(|X-\mu|<2 \sigma)=0.9544 \\
& P(|X-\mu|<3 \sigma)=0.9972 .
\end{aligned}
$$

Normal approximation to binomial:

The above theorem can be used to approximate binomial distribution by normal distribution. It will be recommended to use the following rule of thumb:
"If

$$
n \cdot p>5 \quad \text { and } \quad n \cdot q>5
$$

then the binomial distribution can be approximated by normal distribution."
(Last revised: 24.10.2017)

