Quantitative Methoden der Logistik

A. Pflichtaufgaben

Problem 1 14 Punkte

Ein Unternehmen produziert zwei Produkte P_1 und P_2 unter Verwendung von drei Rohmaterialien R_1 , R_2 und R_3 . Die Deckungsbeiträge der Produkte, ihr Rohmaterialverbrauch pro Mengeneinheit sowie die Verfügbarkeit der Rohmaterialien sind in der folgenden Tabelle gegeben:

Rohmaterialien	P_1	P_2	Verfügbarkeit
$R_{\rm l}$	2	2	24
R_{2}	1	5	44
R_3	6	2	60
Gewinn	6	9	

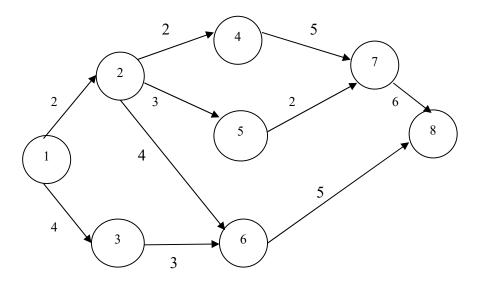
Das Unternehmen sucht ein Produktionsprogramm, welches seinen Gewinn maximiert.

- 1. Formulieren Sie das Problem als ein Modell der linearen Optimierung.
- 2. Lösen Sie das Modell nach der Simplexmethode.
- 3. Wie viel Einheiten vom Rohmaterial R_2 bleiben ungenutzt?

Problem 2 13 Punkte

Die nachfolgende Tabelle zeigt die Gewinnerwartung einer Firma in vier möglichen Marktsituation:

	$b_1(0.10)$	$b_2(0.30)$	$b_3(0.35)$	$b_4(0.25)$
a_1	3	6	8	4
a_2	5	4	7	5
a_3	6	3	8	6

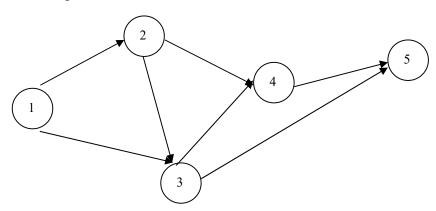

Bestimmen Sie eine "optimale" Alternative jeweils mit den nachfolgenden Methoden:

- 1. Bayes (μ Methode)
- 2 $(\mu \sigma)$ Methode mit der Präferenzfunktion:

$$\Phi(\mu, \sigma) = 3\mu - 0.5\sigma$$

Problem 3 13 Punkte

Gegeben sei folgender Netzplan:


- 1. Bestimmen Sie den kritischen Weg.
- Wie lange dauert das Projekt?
 Berechnen und interpretiren Sie die totalen und freien Schlupfzeiten jeweils für eine kritische und eine nichtkritische Aktivität.

B. Wahlaufgaben

Es ist **genau** eine der nachfolgenden zwei Aufgaben zu wählen. **Streichen** Sie die Aufgabe, die Sie **nicht** gewählt haben, **durch**.

Problem 4 10 Punkte

Gegeben sei folgender Netzplan:

und folgende Tabelle

Akti	vität	Schätzung der Dauer (Tage)		
i	j	a_{ij}	$m_{_{\!ar{j}}}$	b_{ij}
1	2	4	7	12
1	3	8	10	13
2	3	6	5	8
2	4	1	3	4
3	4	2	5	6
3	5	4	5	6
4	5	2	4	7

- 1. Ermitteln Sie den kritischen Weg und die Projektdauer,
- 2. Mit welcher Wahrscheinlichkeit wird das Projekt spätestens in 32 Tagen abgeschlossen?

1.

i	j	a_{ij}	m_{ij}	b_{ij}	\overline{t}_{ij}	σ_{ij}^2
1	2	4	7	12	7.33	1.78
1	3	8	10	13	10.17	0.69
2	3	6	5	8	7.67	0.11
2	4	1	3	4	2.83	0.25
3	4	2	5	6	4.67	0.44
3	5	4	5	6	5.00	0.11
4	5	2	4	7	4.17	0.69

Problem 5 10 Punkte

Drei Betriebe B_i , i = 1,2,3, stellen ein gleichartiges Gut in folgenden Mengeneinheiten dar:

$$B_1:3; \quad B_2:18; \quad B_3:9.$$

Das Gut wird zu vier Endverbrauchern mit folgendem Bedarf transporteiert:

$$E_1:6;$$
 $E_2:8$ $E_3:5;$ $E_4:11.$

Die Transportkosten pro Mengeneinheit für jede Route sind in folgender Tabelle angegeben:

·	E_1	E_2	E_3	E_4	Lieferung
B_1	12	10	8	11	3
B_2	12	10	14	14	18
B_3	8	8	11	13	9
Bedarf	6	8	5	11	

Es ist ein Plan zu ermitteln, der die Transportmengen zwischen den Betrieben und Endverbrauchern so festlegt, dass die gesamten Transportkosten minimiert werden

