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Part II 

Analysis in Economics 
 

 

D. 2. 1. (Function) 

Let n
D R⊆ . A function f of n variables, denoted by :f D R→ , is a rule that assigns to each 

n-tuple ( )1 2, ,..., nx x x D∈ a unique real number denoted by ( )1 2, , ..., nf x x x . The setD is called 

the domain of f  and its range is the set of values that f takes on, that is, 

{ }1 2 1 2( ) ( , ,..., ) | ( , , ..., )n nf D f x x x x x x D= ∈  

 

Ex. 2. 1. (Some Examples of Economic Functions) 

1. A Cobb-Douglas Function: 

 

 0.4 0.6( , ) 2y L K L K= ⋅ ⋅ . 

     

     Here are: 

 

 L : Labour, 

 K : Capital. 

 

2. A total cost function: 

 

 1 2 1 2 1 2( , ) 4C r r r r r r= + + ⋅   

 

     Here are: 

 

 C : Factor costs, 

 1 2,r r : Inputs. 

 

3. A utility function: 

 

            2

1 2 1 2( , ) 128 10U x x x x= − .  

 

     Here are: 

 

 U : Utility, 

 1 2,x x : Consumed amounts of two products. 

 

Ex. 2. 2.  

Sketch the graph and the contour map of the functions 1-3 in Ex. 2. 1.: 

 

Solution: 

1. 0.4 0.6( , ) 2y L K L K= ⋅ ⋅           
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2. 1 2 1 2 1 2( , ) 4C r r r r r r= + + ⋅  
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3. 2

1 2 1 2( , ) 128 10U x x x x= −  
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D. 2. 2. (Partial Derivatives of a Function of Two Variables) 

If f  is a function of two variables, then its partial derivatives are the functions xf and 

yf defined by 

  

 ( , )

( , ) ( , )
: limx x y

h o

f x h y f x y
f

h→

+ −
= , 

 ( , )

( , ) ( , )
: limy x y

h o

f x y h f x y
f

h→

+ −
= . 

 

R. 2. 1. (Notations for Partial Derivatives) 

Let ( , )z f x y= . Then 

 

 ( )( , ) ,x x y x

f z
f f x y

x x x

∂ ∂ ∂
= = = =

∂ ∂ ∂
, 

 ( )( , ) ,y x y y

f z
f f x y

y y y

∂ ∂ ∂
= = = =

∂ ∂ ∂
. 

 

R. 2. 2. (Rule for Finding xf  and yf ) 

(i)   To find xf  keep y  as constant and differentiate ( , )f x y with respect to x . 

(ii)  To find yf  keep x  as constant and differentiate ( , )f x y with respect to y . 

 

R. 2. 3. (Geometric Interpretation of Partial Derivatives) 

Let ( , )z f x y= . Then, taking the partial derivative xf and evaluating it at ( ,  )a b amounts to 

holding y constant at y b= and finding the rate of change of f at x a= . Thus, the partial 

derivative is the slope of the tangent line to this curve at the point where x a= and y b= , 

along the plane y b= . (See the figure below.) 

 

 

 
 

 

Ex. 2 . 3. 

Find the partial derivatives of the function  

 
0.4 0.6( , ) 2y L K A K= ⋅ ⋅  
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at 100L = and 80K = and interpret the results. 

 

Solution: 

 
0.6 0.6( , ) 0.8Ly L K A K−= ⋅ ⋅ ;  (100,80) 0.699751727 0.70Ly = ≈ .  

 

Increasing 100L =  by one unit while keeping 80K =  constant will lead to an approximate 

increase of the output by 0.70 units. 

 
0.4 0.4( , ) 1.2Ky L K A K −= ⋅ ⋅ ;  (100,80) 0.502791789Ky = .  

 

Increasing 80K =  by one unit while keeping 100L =  constant will lead to an approximate 

increase of the output by 0.50 units. 

 

D. 2. 3. (Partial Derivatives of a Function of nVariables) 

Let 1 2( , ,..., ) n

nx x x R∈ and f be a function of n  variables 1 2, ,..., nx x x . The partial derivative of 

f with respect to ,  1,2,..., ,ix i n= is hat function denoted by
ix

f , such that its function value at 

any point P in the domain of f is given by 

 

 

 1 1 1 1
1

0

( ,..., , , ,..., ) ( ,..., )
( ,..., ) : lim

i

i i i n n
x n

h

f x x x x x f x x
f x x

h

− +

→

−
=  

 

if this limit exists, and it is called the i − th partial derivative of f. 
 

R. 2. 4. (Higher Order Partial Derivatives) 

If ( , )z f x y= is a function of two variables x and y , then xf and yf are also functions of two 

variables and we hall call them first order partial derivatives (or simply first partial 

derivatives). If it is possible to differentiate each of these partial derivatives with respect to 

x or y , then this will result in four second partial derivatives (or simply second partial 

derivatives), namely, 

 

 ( )
2

2
( , ) ( , )xx x

z z
f x y f x y

x x x x

∂ ∂ ∂ ∂ = = = ∂ ∂ ∂ ∂ 
, 

 ( )
2

( , ) ( , )xy x

z z
f x y f x y

y y x y x

∂ ∂ ∂ ∂ = = = ∂ ∂ ∂ ∂ ∂ 
, 

 ( )
2

( , ) ( , )yx x

z z
f x y f x y

x x y x y

 ∂ ∂ ∂ ∂
= = = ∂ ∂ ∂ ∂ ∂ 

, 

 ( )
2

2
( , ) ( , )yy x

z z
f x y f x y

y y x y

∂ ∂ ∂ ∂ = = = ∂ ∂ ∂ ∂ 
. 

 

The two second partial derivatives 
2

( , )xy

z
f x y

x y

∂
=

∂ ∂
 and 

2

( , )yx

z
f x y

y x

∂
=

∂ ∂
are called mixed 

partial derivatives of f (or simply mixed partials of f ). 
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T. 2. 1. 

Let f be a function of two variables x and y . If , , ,x y xyf f f f and yxf  are continuous on an 

open Region, then xy yxf f= throughout this region. 

 

Ex. 2 . 4. 

Find the partial derivatives of the function f  if 

 
0.4 0.6( , ) 2f L K A K= ⋅ ⋅ . 

 

Solution: 

 
0.6 0.6( , ) 0.8Lf L K A K−= ⋅ ⋅ ,            0.4 0.4( , ) 1.2Kf L K A K −= ⋅ ⋅ , 

 
1.6 0.6( , ) 0.48LLf L K A K−= − ⋅ ⋅ ,           0.4 01.4( , ) 0.48KKf L K A K −= − ⋅ ⋅  

 
0.6 0.4( , ) 0.48 ( , )LK KLf L K A K f L K− −= ⋅ ⋅ =  

 

D. 2. 4. (Limit of ( , )f x y ) 

Let f be a function of two variables defined throughout the interior of a circle with 

centre ( , )a b , except possibly at ( , )a b itself. The expression 

 

( ) ( ), ,
lim ( , )

x y a b
f x y l

→
=  

 

means that 0,  >0ε δ∀ > ∃  such that 

 

( ) ( )2 2
( , )    whenever   0f x y l x a y bε δ− < < − + − < . 

 

 

R. 2. 5. (Two-Path Rule) 

If 
( ) ( ) 1
, ,
lim ( , )

x y a b
f x y l

→
= along a path 1C and 

( ) ( ) 2
, ,
lim ( , )

x y a b
f x y l

→
= along a path 2C such that 1 2l l≠ , 

then 
( ) ( ), ,
lim ( , )

x y a b
f x y l

→
= does not exist. 

 

T. 2. 2. (The Algebra of Limits) 

Let f  and g be functions of two variables x and y for which 

 

( ) ( ), ,
lim ( , ) f

x y a b
f x y l

→
=   and  

( ) ( ), ,
lim ( , ) g

x y a b
g x y l

→
=  

 

where ,  f gl l R∈ . Then 

 

1. 
( ) ( )

[ ]
, ,
lim ( , ) ( ) f g

x y a b
f x y g x y l l

→
+ + = +  

2. 
( ) ( )

[ ]
, ,
lim ( , ) ( ) f g

x y a b
f x y g x y l l

→
− + = −  

3. 
( ) ( )

[ ]
, ,
lim ( , )    (  is constant)f

x y a b
k f x y k l k

→
⋅ = ⋅  
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4. 
( ) ( ), ,
lim ( , ) ( , ) f g

x y a b
f x y g x y l l

→
⋅ = ⋅  

5. 
( ) ( ), ,

( , )
lim    (provided 0)

( , )

f

g
x y a b

g

lf x y
l

g x y l→
= ≠ . 

 

D. 2. 5. (Continuity) 

Let f  be a function of two variables x and y defined on a disc with centre ( , )a b . Then f is 

said to be continuous at the point ( , )a b if 

 

1. f is defined at ( , )a b , 

2. 
( ) ( ), ,
lim ( , )

x y a b
f x y l

→
=  exists. 

3. 
( ) ( ), ,
lim ( , ) ( , )

x y a b
f x y f a b

→
= . 

 

A function is said to be continuous if it is continuous at every point of its domain. 

 

T. 2. 3.  

If f  and g are functions which are continuous at the point ( , )a b , then 

 

1. f g+ is continuous at ( , )a b , 

2. f g− is continuous at ( , )a b , 

3. f g⋅ is continuous at ( , )a b , 

4. 
f

g
is continuous at ( , )a b provided that ( , ) 0g a b ≠ . 

 

T. 2. 4.  

Let f  be a function of two variables and g a function of one variable. If f is continuous at 

( , )a b  and g is continuous at ( , )f a b , then the composite function h g f= � defined by 

( , ) ( ( , ))h x y g f x y= is continuous at ( , )a b . 

 

D. 2. 6. (Partial Differentials) 

Let 1 2( , ,..., ) n

nx x x R∈ and f be a function of n  variables 1 2, ,..., nx x x . The partial differential 

of f  with respect to ,  1,  2,..., ,ix i n= is defined by 

 

: ,    1,  2,..., .
i ix x idf f dx i n= ⋅ =  

 

R. 2. 6. 

,    1,  2,..., .
i ix xdf f i n≈ ∆ =  

 

 

Ex. 2. 5. 

Consider a firm that uses capital (K  ) and labour ( L ) to produce a good according to the 

following production function 

 

( , )Y L K L K= ⋅ , 
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where the current level of capital and labour are given by 400K = and 100L = , respectively. 

Suppose that the management of the firm wants to increase only the total stock by 0.6 units. 

Approximate the change in production using the partial differential. 

 

Solution: 

 

   ( ) ( ), , ,K KdK L K dK Y L K dK= ⋅ , 

( ) 1
, ,

2
K

L
dK L K dK dK

K
= ⋅ , 

( ) 1 100
1, 4 0.6

2 400
KdK L K= = = ⋅  

                   
1 1

0.6 0.15
2 4

= ⋅ =  

 

D. 2. 7. (Total Differential) 

Let 1 2( , ,..., ) n

nx x x R∈ and f be a function of n  variables 1 2, ,..., nx x x . The total differential of 

f  is defined by 

1

: .
i

n

x i

i

df f dx
=

= ⋅∑  

 

R. 2. 7. 

.df f≈ ∆  

 

Ex. 2. 6. 

Consider the informations in Ex. 2. 5. Suppose that the management of the firm wants to 

increase the total stock by 0.6 units and the labour by 0.1 units. Approximate the change in 

production using the total differential. 

 

Solution: 

 

 ( , ) ( , ) ( , )A KdY L K Y L K dL Y L K dK= ⋅ + ⋅  

 

1, 4, 0.1, 0.6

1 1
( , )

2 2
L K dL dK

K L
dY L K dA dK

L K
= = = =

 
= ⋅ + ⋅ 
 

 

                           
1 1 1 400

0.6 0.1
2 4 2 100

= ⋅ + ⋅  

 

                0.15 0.10 0.175+ = . 

 

 

T. 2. 5. (Implicit Differentiation) 

If an equation ( , ) 0F x y = determines implicitly a differentiable function f  of one 

variable x such that ( )y f x= , then 

 

( , )

( , )

x

y

dy F x y

dx F x y
= − . 
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D. 2. 8. (Partial Elasticity) 

Let f be a partially differentiable function of n  variables 1 2, ,..., nx x x . The partial elasticity 

of f with respect to ix is defined by 

 

, 1 2

1 2

( , ,..., ) : ,      1,  2,..., .
( , ,..., )i i

i
f x n x

n

x
x x x f i n

f x x x
ε = ⋅ =  

 

R. 2. 8. 

The elasticity , if xε  gives the approximate percentage increase of production in reaction to a 

one percent increase of the factor of ix . 

 

Ex. 2. 7 

Find and interpret the partial elasticity’s of the production function 

 
0.2 0.8( , ) 2y L K L K= ⋅ ⋅  

 

at the point ( )20,  10 . 

 

Solution: 

 , ( , )
( , )

y L L

L
L K y

y L K
ε = ⋅   

       
0.8 0.8

0.2 0.8
0.4 0.2

2

L
L K

L K

−= ⋅ ⋅ ⋅ =
⋅ ⋅

 

 

An increase of labour by 1% (irrespective of the production level) leads to an approximate 

increase of production by 0.2% 

 

, ( , )
( , )

y K K

K
L K y

y L K
ε = ⋅   

       
0.2 0.2

0.2 0.8
1.6 0.8

2

K
L K

L K

−= ⋅ ⋅ ⋅ =
⋅ ⋅

 

 

An increase of capital by 1% (irrespective of the production level) leads to an approximate 

increase of production by 0.8% 

 

Hence, the exponents in the Cobb-Douglas production are the partial elasticities of production 

with respect to labour and capital. 

 

D. 2. 9. (Homogeneity) 

Let f be a function of n variables for which ( )1 2, ,..., ,  0ntx tx tx D t∈ > . f  is called 

homogeneous of degree k if 

 

( ) ( ) ( )1 2 1 2 1 2, ,..., , ,..., ,  , ,...,k

n n nf tx tx tx t f x x x x x x D= ⋅ ∀ ∈ . 
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Ex. 2. 8. 

1.  

The production function  

 

1 2 1 2( , ) 8 9f x x x x= +  

 

is homogeneous of degree 1 because: 

 

( ) ( )1 2 1 2 1 2 1 2( , ) 8 9 8 9 , .f tx tx tx tx t x x t f x x= + = + = ⋅  

 

2. 

The production function  

 
2 2

1 2 1 1 2 2( , )f x x x x x x= + +  

 

is homogeneous of degree 2 because: 

 

( ) ( )2 2 2 2 2 2 2

1 2 1 1 2 2 1 1 2 2 1 2( , ) ( ) ( ) , .f tx tx tx t x x tx t x x x x t f x x= + + = + + = ⋅  

 

3. 

The production function  

 
3 3

1 2 1 1 2 2( , ) 2f x x x x x x= + +  

 

is not homogeneous because t  cannot be completely factored out: 

 
3 2 3

1 2 1 1 2 2( , ) ( ) 2 ( )f tx tx tx t x x tx= + + . 

 

D. 10. 10. (Returns to Scale) 

A production function exhibits constant returns to scale if when all inputs are increased by a 

given proportion k , output increases by the same proportion. 

If output increases by a proportion greater than k , there are increasing returns to scale; and if 

output increases by a smaller proportion than k , there are diminishing returns to scale. 

 

D. 2. 11. (Relative Extrema of Functions of Two Variables) 

Let f be a function of two variables. We say that f has a relative maximum at the point 

0 0( , )x y  (or 0 0( , )f x y is a relative maximum of f ) if there is some disc Dwith centre 

0 0( , )x y such that  

 

0 0( , ) ( , ),  ( , ) .f x y f x y x y D≤ ∀ ∈  

 

 

If  

0 0( , ) ( , ),  ( , ) ,f x y f x y x y D≥ ∀ ∈  

 

then 0 0( , )f x y is called a relative minimum of f . 
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D. 2. 12. (Absolute Extrema of Functions of Two Variables) 

If the inequality 0 0( , ) ( , )f x y f x y≤ holds for all points ( , )x y  in the domain of f , 

then 0 0( , )f x y is called an absolute maximum of f . Likewise 0 0( , )f x y is called an absolute 

minimum of f if 0 0( , ) ( , )f x y f x y≥ holds for all points ( , )x y in the domain of f .  

 

T. 2. 11. (A Necessary Condition for Relative Extrema) 

Let ( , )z f x y= be a function of two variables. If f has a relative extremum (either a relative 

maximum or a relative minimum) at 0 0( , )x y  and 0 0( , )xf x y and 0 0( , )yf x y both exist, then 

 

0 0 0 0( , ) 0      ( , ) 0x yf x y f x y= ∧ = . 

 

D. 2. 13. (Critical Points) 

Let f be a function of two variables x and y . The point 
0 0( , )x y is called a critical point of 

f if either 

 

  1. 0 0 0 0( , ) 0      ( , ) 0x yf x y f x y= ∧ = , or 

  2. 0 0 0 0( , ) 0 or ( , ) 0x yf x y f x y= = does not exist. 

 

D. 2. 14. (Saddle Point) 

Let f be a function of two variables x and y . We say that the function f has a saddle point on 

its graph at 0 0 0 0( , , ( , ))x y f x y if 
0 0( , )x y is a critical point of f and f does not have a local 

extremum at
0 0( , )x y . 

 

T. 2. 7. (Second Partials Test) 

Let f be a function of two variables x and y . Suppose f has continuous second partial 

derivatives in some open disc with centre 
0 0( , )x y  and 0 0 0 0( , ) 0 and ( , ) 0x yf x y f x y= = . Let 

 
2

0 0 0 0 0 0 0 0( , ) : ( , ) ( , ) ( , )xx yy xyD D x y f x y f x y f x y = = ⋅ −   . 

Then 

 

1. If 0D > and 0 0( , ) 0xxf x y < , 0 0( , )f x y is a relative maximum. 

2. If 0D > and 0 0( , ) 0xxf x y > , 0 0( , )f x y is a relative minimum. 

3. If 0D < , f has a saddle point at 0 0 0 0( , , ( , ))x y f x y . 

4. If 0D = , the test fails. 

 

Ex. 2. 9.  

A firm’s productionQ depending on two input amounts 1r and 2r is given by the following 

function 

  2 2

1 2 1 2 1 1 2 2( , ) 440 4 10 3 2.5Q r r r r r r r r= + + − + ⋅ − . 

 

Determine the factor combination for which the production will be maximal. How much will 

it be for this combination? 
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Solution 

1 1 2 1 2( , ) 4 2 3 : 0rQ r r r r= − + =  

2 1 2 1 2( , ) 10 3 5 : 0rQ r r r r= + − =  

 

1 2     50,    32r r⇒ = =  

1 1 1 2 2 21 2 1 2 1 2( , ) 2,    ( , ) 3,    ( , ) 5r r r r r rQ r r Q r r Q r r= − = = − . 

 

For the factor combination 1 250,  32r r= =  the production will be maximal, since  

 

 
1 1 2 2 1 2 1 1

2
2

1 2 1 2 1 2 1 2( , ) ( , ) ( , ) ( 2) ( 5) 3 1 0 and ( , ) 2 0r r r r r r r rQ r r Q r r Q r r Q r r ⋅ − = − ⋅ − − = > = − <  . 

 

The firm will then have a maximum output oft of (50,32) 700Q = . 
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R. 2. 9. (Optimisation with Constraints as Equations) 

Suppose :  nf R R→  and :  n mg R R→ . Consider the constrained optimisation problem: 

 

max ( ) s.t. ( ) 0.
nx R
f x g x

∈
=  

 

If *x is a solution to this problem, then there exist Lagrange multipliers ( )1 2, ,..., :nλ λ λ λ=  

such that with the Lagrangean 

 

( ) ( )
1

; ( )
m

i i

i

L x f x g xλ λ
=

= − ⋅∑  

 

 

the following conditions are fulfilled: 

 

( )* *; 0,    1, 2,...,
jx

L x j nλ = =  

 ( )* *; 0,    1, 2,..., .
i

L x i mλ λ = =  
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R. 2. 10. 

The Lagrange multipliers iλ  approximates the marginal impact on the objective function 

caused by a small change in the constant of the constraint i . 

 

R. 2. 11. 
Optimisation problems with constraints as equations can in the simples cases be also solved 

by the elimination method. 

 

Ex. 2. 10. 

What combination of goods 1G  and 2G  should a firm produce to minimise costs when the 

joint cost function is 

 
2 2

1 2 1 2 1 2( , ) 6 10 30C x x x x x x= + − +   ( ,  1, 2 :  amount of )i ix i G=  

 

and the firm has a production quota 

 

1 2 34x x+ = ? 

 

Estimate the effect on costs if the production quota is reduced by 1 unit. 

 

 

1. Solution by the elimination method: 

 

 2 134x x= −  

 ( ) ( )
~

22

1 1 1 1 1( ) 6 10 34 34 30C x x x x x= + − − − +  

 
~

2

1 1 1( ) 17 714 11590C x x x= − +  

 
~

1'( ) 34 714C x x= −  

 1 134 714 0      21,x x− = ⇒ =  
~

1''( ) 34 0C x = > , 

 

Hence
~

1( )C x assumes its relative minimum at 1 21x = .  

 

2 134 34 21 13x x= − = − = . 

 

( )21,13 4093.C =  

 

2. Solution by the method of Lagrange multipliers: 

 

( ) ( )2 2

1 2 1 2 1 2 1 2, ; 6 10 30 34L x x x x x x x xλ λ= + − + − + −  

 

   ( )
1 1 2 1 2, ; 12 0xL x x x xλ λ= − − =  

   ( )
2 1 2 1 2, ; 20 0xL x x x xλ λ= − + − =  

   ( )1 2 1 2, ; 33 0L x x x xλ λ = + − =  
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 1 2   21,    13,    239.x x λ⇒ = = =  

 

(The sufficiency condition will not be tested.) 

 

With 239λ = , a decrease in the constant (the production quota) will lead to a cost increase of 

approximately 239. 
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